// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Include guard for non-SIMD code. #ifndef THIRD_PARTY_GEMMA_CPP_OPS_MATMUL_INL_H_ #define THIRD_PARTY_GEMMA_CPP_OPS_MATMUL_INL_H_ #include #include #include #include #include #include #include // std::enable_if_t #include "compression/compress.h" #include "compression/sfp.h" #include "hwy/base.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/detect_targets.h" #include "hwy/profiler.h" #endif // THIRD_PARTY_GEMMA_CPP_OPS_MATMUL_INL_H_ // Include guard for (potentially) SIMD code. #if defined(THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE) == defined(HWY_TARGET_TOGGLE) #ifdef THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE #undef THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE #else #define THIRD_PARTY_GEMMA_CPP_MATMUL_TOGGLE #endif #include "compression/compress-inl.h" #include "hwy/contrib/dot/dot-inl.h" #include "hwy/contrib/math/math-inl.h" #include "hwy/contrib/matvec/matvec-inl.h" HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { namespace hn = hwy::HWY_NAMESPACE; HWY_INLINE constexpr size_t MaxCols() { // Vec + mat rows should fit into 32 KiB L1. return 2048; } template HWY_INLINE constexpr size_t RowsPerStrip() { // Aim for 128 work items to reduce pool overhead. Must be at least one // vector; prefer a power of two for faster division. constexpr size_t kLanes = hn::ScalableTag().MaxLanes(); constexpr size_t kRowsPerStrip = kOuter < 128 ? kLanes : HWY_MAX(kLanes, 1ULL << hwy::FloorLog2(kOuter / 128)); return kRowsPerStrip; } // Shared between f32 and bf16, which also accumulates into f32 vectors. template > HWY_INLINE void StoreHorizontalSums(DF df, // VF c00, VF c01, VF c02, VF c03, // VF c10, VF c11, VF c12, VF c13, // VF c20, VF c21, VF c22, VF c23, // VF c30, VF c31, VF c32, VF c33, // float scale, float* HWY_RESTRICT tile_c, size_t stride_c) { // We are computing the product of (4, 4N) * (4N, 4) = (4, 4) tiles. // Each entry of C[r,c] is a dot product of A.row and B.col, which reside in // the lanes of `c$r$c`, so we store their horizontal sum (ReduceSum). This is // expensive, but only a fraction of the kColsA_RowsB/N FMAs. tile_c[stride_c * 0 + 0] = scale * hn::ReduceSum(df, c00); tile_c[stride_c * 0 + 1] = scale * hn::ReduceSum(df, c01); tile_c[stride_c * 0 + 2] = scale * hn::ReduceSum(df, c02); tile_c[stride_c * 0 + 3] = scale * hn::ReduceSum(df, c03); if (kNumRows == 1) return; tile_c[stride_c * 1 + 0] = scale * hn::ReduceSum(df, c10); tile_c[stride_c * 1 + 1] = scale * hn::ReduceSum(df, c11); tile_c[stride_c * 1 + 2] = scale * hn::ReduceSum(df, c12); tile_c[stride_c * 1 + 3] = scale * hn::ReduceSum(df, c13); if (kNumRows == 2) return; tile_c[stride_c * 2 + 0] = scale * hn::ReduceSum(df, c20); tile_c[stride_c * 2 + 1] = scale * hn::ReduceSum(df, c21); tile_c[stride_c * 2 + 2] = scale * hn::ReduceSum(df, c22); tile_c[stride_c * 2 + 3] = scale * hn::ReduceSum(df, c23); if (kNumRows == 3) return; tile_c[stride_c * 3 + 0] = scale * hn::ReduceSum(df, c30); tile_c[stride_c * 3 + 1] = scale * hn::ReduceSum(df, c31); tile_c[stride_c * 3 + 2] = scale * hn::ReduceSum(df, c32); tile_c[stride_c * 3 + 3] = scale * hn::ReduceSum(df, c33); } // Completes the tile by summing across the vectors, and adds the biases. template > HWY_INLINE void StoreHorizontalSumsAdd(DF df, // VF c00, VF c01, VF c02, VF c03, // VF c10, VF c11, VF c12, VF c13, // VF c20, VF c21, VF c22, VF c23, // VF c30, VF c31, VF c32, VF c33, const float* HWY_RESTRICT add, const float scale, float* HWY_RESTRICT tile_c, size_t stride_c) { // We are computing the product of (4, 4N) * (4N, 4) = (4, 4) tiles. // Each entry of C[r,c] is a dot product of A.row and B.col, which reside in // the lanes of `c$r$c`, so we store their horizontal sum (ReduceSum). This is // expensive, but only a fraction of the kColsA_RowsB/N FMAs. float addon0 = hwy::ConvertScalarTo(add[0]); tile_c[stride_c * 0 + 0] = scale * hn::ReduceSum(df, c00) + addon0; float addon1 = hwy::ConvertScalarTo(add[1]); tile_c[stride_c * 0 + 1] = scale * hn::ReduceSum(df, c01) + addon1; float addon2 = hwy::ConvertScalarTo(add[2]); tile_c[stride_c * 0 + 2] = scale * hn::ReduceSum(df, c02) + addon2; float addon3 = hwy::ConvertScalarTo(add[3]); tile_c[stride_c * 0 + 3] = scale * hn::ReduceSum(df, c03) + addon3; if (kNumRows == 1) return; tile_c[stride_c * 1 + 0] = scale * hn::ReduceSum(df, c10) + addon0; tile_c[stride_c * 1 + 1] = scale * hn::ReduceSum(df, c11) + addon1; tile_c[stride_c * 1 + 2] = scale * hn::ReduceSum(df, c12) + addon2; tile_c[stride_c * 1 + 3] = scale * hn::ReduceSum(df, c13) + addon3; if (kNumRows == 2) return; tile_c[stride_c * 2 + 0] = scale * hn::ReduceSum(df, c20) + addon0; tile_c[stride_c * 2 + 1] = scale * hn::ReduceSum(df, c21) + addon1; tile_c[stride_c * 2 + 2] = scale * hn::ReduceSum(df, c22) + addon2; tile_c[stride_c * 2 + 3] = scale * hn::ReduceSum(df, c23) + addon3; if (kNumRows == 3) return; tile_c[stride_c * 3 + 0] = scale * hn::ReduceSum(df, c30) + addon0; tile_c[stride_c * 3 + 1] = scale * hn::ReduceSum(df, c31) + addon1; tile_c[stride_c * 3 + 2] = scale * hn::ReduceSum(df, c32) + addon2; tile_c[stride_c * 3 + 3] = scale * hn::ReduceSum(df, c33) + addon3; } // Wrapper around StoreHorizontalSums and StoreHorizontalSumsAdd to shorten call // sites. If `!kAdd`, `add` is nullptr, so adding `add_offset` to it would be // UB, hence we pass it as a separate argument. template > HWY_INLINE void StoreHorizontalSumsMaybeAdd( DF df, VF c00, VF c01, VF c02, VF c03, VF c10, VF c11, VF c12, VF c13, VF c20, VF c21, VF c22, VF c23, VF c30, VF c31, VF c32, VF c33, const float* HWY_RESTRICT add, size_t add_offset, const float scale, float* HWY_RESTRICT tile_c, size_t stride_c) { if constexpr (kAdd) { StoreHorizontalSumsAdd(df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, add + add_offset, scale, tile_c, stride_c); } else { StoreHorizontalSums(df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, scale, tile_c, stride_c); } } #undef GEMMA_NATIVE_BF16 #if HWY_IDE || (defined(HWY_NATIVE_REORDER_WIDEN_MUL_ACC_BF16) == \ defined(HWY_TARGET_TOGGLE)) #define GEMMA_NATIVE_BF16 1 #else #define GEMMA_NATIVE_BF16 0 #endif #if GEMMA_NATIVE_BF16 // Specialization for f32 += bf16 * bf16 that avoids promoting to f32. template HWY_INLINE void GEMM_4x4_Tile(const hwy::bfloat16_t* HWY_RESTRICT A, const hwy::bfloat16_t* HWY_RESTRICT B, float* HWY_RESTRICT C, const float scale, const float* HWY_RESTRICT add, const size_t idx_tile, const size_t xtiles, const size_t stride_a, const size_t stride_b, const size_t stride_c) { constexpr size_t kRegRows = 4; constexpr size_t kRegCols = 4; static_assert(kNumRows <= kRegRows); // Top-left of tile is (row_a, col_ab) for A, and (row_b_col_c, col_ab) for B. const size_t row_a = idx_tile / xtiles * kRegRows; const size_t row_b_col_c = idx_tile % xtiles * kRegCols; const hn::ScalableTag df; using VF = hn::Vec; // ReorderWidenMulAccumulate does not use its sum1 arg and we can use full // bf16 vectors. const hn::Repartition d; VF unused_sum1 = hn::Zero(df); const size_t N = Lanes(d); VF c00 = hn::Zero(df); VF c01 = hn::Zero(df); VF c02 = hn::Zero(df); VF c03 = hn::Zero(df); VF c10 = hn::Zero(df); VF c11 = hn::Zero(df); VF c12 = hn::Zero(df); VF c13 = hn::Zero(df); VF c20 = hn::Zero(df); VF c21 = hn::Zero(df); VF c22 = hn::Zero(df); VF c23 = hn::Zero(df); VF c30 = hn::Zero(df); VF c31 = hn::Zero(df); VF c32 = hn::Zero(df); VF c33 = hn::Zero(df); const hwy::bfloat16_t* HWY_RESTRICT tile_a = A + stride_a * row_a; const hwy::bfloat16_t* HWY_RESTRICT tile_b = B + stride_b * row_b_col_c; // Loop over columns of A and columns of the transposed B, in steps of N. // Accumulates into the c## vectors. HWY_UNROLL(1) for (size_t col_ab = 0; col_ab < kColsA_RowsB; col_ab += N) { using V = hn::Vec; const V b0 = hn::LoadU(d, tile_b + stride_b * 0 + col_ab); const V b1 = hn::LoadU(d, tile_b + stride_b * 1 + col_ab); const V b2 = hn::LoadU(d, tile_b + stride_b * 2 + col_ab); const V b3 = hn::LoadU(d, tile_b + stride_b * 3 + col_ab); const V a0 = hn::LoadU(d, tile_a + stride_a * 0 + col_ab); c00 = hn::ReorderWidenMulAccumulate(df, a0, b0, c00, unused_sum1); c01 = hn::ReorderWidenMulAccumulate(df, a0, b1, c01, unused_sum1); c02 = hn::ReorderWidenMulAccumulate(df, a0, b2, c02, unused_sum1); c03 = hn::ReorderWidenMulAccumulate(df, a0, b3, c03, unused_sum1); if constexpr (kNumRows == 1) continue; const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab); c10 = hn::ReorderWidenMulAccumulate(df, a1, b0, c10, unused_sum1); c11 = hn::ReorderWidenMulAccumulate(df, a1, b1, c11, unused_sum1); c12 = hn::ReorderWidenMulAccumulate(df, a1, b2, c12, unused_sum1); c13 = hn::ReorderWidenMulAccumulate(df, a1, b3, c13, unused_sum1); if constexpr (kNumRows == 2) continue; const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab); c20 = hn::ReorderWidenMulAccumulate(df, a2, b0, c20, unused_sum1); c21 = hn::ReorderWidenMulAccumulate(df, a2, b1, c21, unused_sum1); c22 = hn::ReorderWidenMulAccumulate(df, a2, b2, c22, unused_sum1); c23 = hn::ReorderWidenMulAccumulate(df, a2, b3, c23, unused_sum1); if constexpr (kNumRows == 3) continue; const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab); c30 = hn::ReorderWidenMulAccumulate(df, a3, b0, c30, unused_sum1); c31 = hn::ReorderWidenMulAccumulate(df, a3, b1, c31, unused_sum1); c32 = hn::ReorderWidenMulAccumulate(df, a3, b2, c32, unused_sum1); c33 = hn::ReorderWidenMulAccumulate(df, a3, b3, c33, unused_sum1); } // Ensure sum1 was indeed unused. HWY_DASSERT(hn::AllTrue(df, hn::Eq(unused_sum1, hn::Zero(df)))); float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; StoreHorizontalSumsMaybeAdd( df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, add, row_b_col_c, scale, tile_c, stride_c); } #endif // GEMMA_NATIVE_BF16 // The col_ab loop is unrolled 2x, so we have two consecutive a0/a1 and b00/b01 // etc. Multiplies a[c] with b[r,c] and adds to c[r]. template HWY_INLINE void UpdateTileRow(const VF& a0, const VF& a1, const VF& b00, const VF& b01, const VF& b10, const VF& b11, const VF& b20, const VF& b21, const VF& b30, const VF& b31, VF& c0, VF& c1, VF& c2, VF& c3) { c0 = hn::MulAdd(a0, b00, c0); c1 = hn::MulAdd(a0, b10, c1); c2 = hn::MulAdd(a0, b20, c2); c3 = hn::MulAdd(a0, b30, c3); c0 = hn::MulAdd(a1, b01, c0); c1 = hn::MulAdd(a1, b11, c1); c2 = hn::MulAdd(a1, b21, c2); c3 = hn::MulAdd(a1, b31, c3); } // Accumulates a single kNumRowsx4 tile of A x B into C. B is transposed, so we // can iterate over both A and B with consecutive vector loads. kNumRows<=4. // General case: uses CompressTraits to load from A and B. template HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, float* HWY_RESTRICT C, const float scale, const float* HWY_RESTRICT add, const size_t idx_tile, const size_t xtiles, const size_t stride_a, const size_t stride_b, const size_t stride_c) { constexpr size_t kRegRows = 4; constexpr size_t kRegCols = 4; static_assert(kNumRows <= kRegRows); using TraitsA = CompressTraits; using TraitsB = CompressTraits; // Top-left of tile is (row_a, col_ab) for A, and (row_b_col_c, col_ab) for B. const size_t row_a = idx_tile / xtiles * kRegRows; const size_t row_b_col_c = idx_tile % xtiles * kRegCols; const hn::ScalableTag d32; const size_t N = hn::Lanes(d32); using V = hn::Vec; V c00 = hn::Zero(d32); V c01 = hn::Zero(d32); V c02 = hn::Zero(d32); V c03 = hn::Zero(d32); V c10 = hn::Zero(d32); V c11 = hn::Zero(d32); V c12 = hn::Zero(d32); V c13 = hn::Zero(d32); V c20 = hn::Zero(d32); V c21 = hn::Zero(d32); V c22 = hn::Zero(d32); V c23 = hn::Zero(d32); V c30 = hn::Zero(d32); V c31 = hn::Zero(d32); V c32 = hn::Zero(d32); V c33 = hn::Zero(d32); const size_t tile_a_ofs = stride_a * row_a; const size_t tile_b_ofs = stride_b * row_b_col_c; // Loop over columns of A and columns of the transposed B, in steps of 2*N // (since we are decoding consecutive bytes at each iteration). // Accumulates into the c## vectors. size_t col_ab = 0; HWY_UNROLL(1) for (; col_ab <= kColsA_RowsB - 2 * N; col_ab += 2 * N) { V b00, b01; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 0 + col_ab, b00, b01); V b10, b11; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 1 + col_ab, b10, b11); V b20, b21; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 2 + col_ab, b20, b21); V b30, b31; TraitsB::Decompress2(d32, B, tile_b_ofs + stride_b * 3 + col_ab, b30, b31); V a00, a01; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 0 + col_ab, a00, a01); UpdateTileRow(a00, a01, b00, b01, b10, b11, b20, b21, b30, b31, c00, c01, c02, c03); if constexpr (kNumRows == 1) continue; V a10, a11; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 1 + col_ab, a10, a11); UpdateTileRow(a10, a11, b00, b01, b10, b11, b20, b21, b30, b31, c10, c11, c12, c13); if constexpr (kNumRows == 2) continue; V a20, a21; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 2 + col_ab, a20, a21); UpdateTileRow(a20, a21, b00, b01, b10, b11, b20, b21, b30, b31, c20, c21, c22, c23); if constexpr (kNumRows == 3) continue; V a30, a31; TraitsA::Decompress2(d32, A, tile_a_ofs + stride_a * 3 + col_ab, a30, a31); UpdateTileRow(a30, a31, b00, b01, b10, b11, b20, b21, b30, b31, c30, c31, c32, c33); } float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; StoreHorizontalSumsMaybeAdd( d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, c30, c31, c32, c33, add, row_b_col_c, scale, tile_c, stride_c); } // C = A * B * scale [+ add]. // Computes the matrix product of A and B and stores this in C. // If kAdd is true, the row-vector `add` is added to each row of C. // A is a matrix of size (batch_size, kColsA_RowsB). // B is passed transposed (column-major), so a matrix of size // (kColsBC, kColsA_RowsB), representing a B of size (kColsA_RowsB, kColsBC). // C is a matrix of size (batch_size, kColsBC). // The product is scaled by `scale` to support CompressedArray with scale != 1, // the caller can pass the product of the scales of A and B. // A scale for `add` is not supported, so make sure its scale is 1. // Tiled 4x4 GEMM. Typically batch_size is 1..512, kColsA_RowsB is 3k or 24k, // and kColsBC is 24k or 3k. // This function processes tiles in parallel with a work-stealing thread pool. template HWY_NOINLINE void MatMul_4x4_Batch_Add( size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, float scale, OutT* HWY_RESTRICT C, const AddT* HWY_RESTRICT add, hwy::ThreadPool& pool) { PROFILER_ZONE("Matmul"); // Process reg-sized tiles of C in parallel. We currently write C directly, // which touches more memory than fits in L3. TODO: add another level of loops // so that we finish one L3-sized piece of C at a time. const hn::ScalableTag d; const size_t N = Lanes(d); constexpr size_t kRegRows = 4; constexpr size_t kRegCols = 4; // in vectors static_assert(kColsBC % kRegCols == 0); HWY_ASSERT(kColsA_RowsB % (N * kRegCols) == 0); const size_t kTilesY = (batch_size + kRegRows - 1) / kRegRows; const size_t kTilesX = kColsBC / kRegCols; const size_t kTiles = kTilesX * kTilesY; constexpr size_t kStrideA = kColsA_RowsB; constexpr size_t kStrideB = kColsA_RowsB; constexpr size_t kStrideC = kColsBC; pool.Run(0, kTiles, [&](const uint64_t idx_tile, size_t /*thread*/) HWY_ATTR { // Computes the finished product of one 4x4N tile and writes to C. const size_t num_rows = batch_size - idx_tile / kTilesX * kRegRows; HWY_ASSERT(num_rows > 0); switch (num_rows) { case 1: GEMM_4x4_Tile<1, kColsA_RowsB, kAdd>(A, B, C, scale, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); break; case 2: GEMM_4x4_Tile<2, kColsA_RowsB, kAdd>(A, B, C, scale, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); break; case 3: GEMM_4x4_Tile<3, kColsA_RowsB, kAdd>(A, B, C, scale, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); break; default: GEMM_4x4_Tile<4, kColsA_RowsB, kAdd>(A, B, C, scale, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); } }); } // As above, without the add. template HWY_NOINLINE void MatMul_4x4_Batch( size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, float scale, OutT* HWY_RESTRICT C, hwy::ThreadPool& pool) { MatMul_4x4_Batch_Add( batch_size, A, B, scale, C, /*add=*/static_cast(nullptr), pool); } //------------------------------------------------------------------------------ HWY_INLINE void ToEvenOddF32(const hwy::bfloat16_t* HWY_RESTRICT vec_aligned, const size_t size, float* HWY_RESTRICT out) { const hn::ScalableTag df; const hn::Repartition dbf16; HWY_DASSERT(size % hn::Lanes(dbf16) == 0); HWY_DASSERT(hn::IsAligned(df, vec_aligned)); for (size_t i = 0; i < size; i += hn::Lanes(dbf16)) { const auto interleaved = hn::LoadU(dbf16, vec_aligned + i); hn::Store(hn::PromoteEvenTo(df, interleaved), df, out + i); hn::Store(hn::PromoteOddTo(df, interleaved), df, out + i + hn::Lanes(df)); } } HWY_INLINE void ToEvenOddF32(const float* HWY_RESTRICT vec_aligned, const size_t size, float* HWY_RESTRICT out) { const hn::ScalableTag df; using VF = hn::Vec; HWY_DASSERT(size % (hn::Lanes(df) * 2) == 0); HWY_DASSERT(hn::IsAligned(df, vec_aligned)); VF vec0, vec1; for (size_t i = 0; i < size; i += hn::Lanes(df) * 2) { hn::LoadInterleaved2(df, vec_aligned + i, vec0, vec1); hn::Store(vec0, df, out + i); hn::Store(vec1, df, out + i + hn::Lanes(df)); } } // Simple version without tiling nor threading, but two offsets/outputs and // always with addition. template HWY_INLINE void TwoOfsMatVecAddLoop(const ArrayT& mat, const size_t mat_ofs0, const size_t mat_ofs1, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0, const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1) { PROFILER_ZONE("TwoOfsMatVecAddLoop"); constexpr bool kVecEO = false; const hn::ScalableTag df; for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) { const size_t row_ofs0 = mat_ofs0 + (idx_row)*kInner; const size_t row_ofs1 = mat_ofs1 + (idx_row)*kInner; out0[idx_row] = hwy::ConvertScalarTo(add0[idx_row]) + Dot(df, mat, row_ofs0, vec_aligned, kInner); out1[idx_row] = hwy::ConvertScalarTo(add1[idx_row]) + Dot(df, mat, row_ofs1, vec_aligned, kInner); } } namespace detail { // For each i = [0, num_rows), compute partial (length `num_cols`) dot product // of row i with `vec_aligned` and add into `out[i]`. The upper-left // coordinate of the tile is r0, c0. template HWY_INLINE void AccumulatePartialDotProducts( DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0, size_t c0, size_t num_rows, size_t num_cols, const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) { for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) { const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride; out[idx_row] += Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols); } } // Same as AccumulatePartialDotProducts, but sets out[i] to the first partial // dot product + init (if kInit), which avoids having to zero-initialize and // accumulate. template HWY_INLINE void SetFirstPartialDotProducts(DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0, size_t c0, size_t num_rows, size_t num_cols, const VecT* HWY_RESTRICT vec_aligned, const InitT* HWY_RESTRICT init, float* HWY_RESTRICT out) { for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) { const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride; if constexpr (kInit) { out[idx_row] = hwy::ConvertScalarTo(init[idx_row + r0]) + Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols); } else { out[idx_row] = Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols); } } } // Adds together partial dot products for all tiles with the same r0 (a // horizontal strip of the entire matrix); the result is the full dot product // for rows r in [r0, r0 + num_rows) + optionally the add vector, which we // store into in out[r - r0]. template HWY_INLINE void FullDotProductsForStrip(DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0, size_t num_rows, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add, float* HWY_RESTRICT out) { // Tall and skinny: set `out` to the single dot product. if (mat_stride < MaxCols()) { SetFirstPartialDotProducts(df, mat, mat_ofs, mat_stride, r0, 0, num_rows, mat_stride, vec_aligned, add, out); return; } // We have at least MaxCols, so start by setting `out` to that: SetFirstPartialDotProducts(df, mat, mat_ofs, mat_stride, r0, 0, num_rows, MaxCols(), vec_aligned, add, out); // For further multiples of MaxCols, accumulate. Remainders handled below. size_t c0 = MaxCols(); for (; c0 <= mat_stride - MaxCols(); c0 += MaxCols()) { AccumulatePartialDotProducts(df, mat, mat_ofs, mat_stride, r0, c0, num_rows, MaxCols(), vec_aligned, out); } if (c0 < mat_stride) { // Final cols AccumulatePartialDotProducts(df, mat, mat_ofs, mat_stride, r0, c0, num_rows, mat_stride - c0, vec_aligned, out); } } template HWY_INLINE void MatVecAddInner(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, const AddT* HWY_RESTRICT const add, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { const hn::ScalableTag df; constexpr size_t kRowsPerStrip = RowsPerStrip(); constexpr size_t kNumStrips = kOuter / kRowsPerStrip; // For each entire strip. pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR { PROFILER_ZONE("MatVec.lambda"); const size_t r0 = strip * kRowsPerStrip; detail::FullDotProductsForStrip( df, mat, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add, out + r0); }); // Remaining rows const size_t r0 = kNumStrips * kRowsPerStrip; if (r0 < kOuter) { PROFILER_ZONE("MatVec remainder"); const size_t num_rows = kOuter - r0; detail::FullDotProductsForStrip( df, mat, mat_ofs, kInner, r0, num_rows, vec_aligned, add, out + r0); } } } // namespace detail // Stores dot products of rows with `vec_aligned` + add the values from `add` // (if kAdd), then stores them to `out`. template HWY_INLINE void MatVecT(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, const AddT* HWY_RESTRICT const add, float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { PROFILER_ZONE("MatVecAdd"); #if !defined(HWY_NATIVE_DOT_BF16) || !HWY_NATIVE_DOT_BF16 using MatT = typename ArrayT::value_type; // Sfp -> float does not benefit enough to recoup the cost of ToEvenOddF32. if constexpr (CompressTraits::kSupportsEvenOdd && hwy::IsSameEither() && !(hwy::IsSame() && hwy::IsSame())) { ToEvenOddF32(vec_aligned, kInner, even_odd); detail::MatVecAddInner( mat, mat_ofs, even_odd, add, out, pool); return; } #else (void)even_odd; #endif detail::MatVecAddInner( mat, mat_ofs, vec_aligned, add, out, pool); } // With addition template HWY_INLINE void MatVecAdd(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, const AddT* HWY_RESTRICT const add, float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { return MatVecT(mat, mat_ofs, vec_aligned, add, even_odd, out, pool); } // Without addition template HWY_INLINE void MatVec(const ArrayT& mat, const size_t mat_ofs, const VecT* HWY_RESTRICT const vec_aligned, float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out, hwy::ThreadPool& pool) { MatVecT(mat, mat_ofs, vec_aligned, /*add=*/static_cast(nullptr), even_odd, out, pool); } // Two matrices, same vector template HWY_NOINLINE void TwoMatVecT(const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0, const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1, hwy::ThreadPool& pool) { PROFILER_ZONE("TwoMatVecAdd"); const hn::ScalableTag df; constexpr size_t kRowsPerStrip = RowsPerStrip(); constexpr size_t kNumStrips = kOuter / kRowsPerStrip; constexpr bool kVecIsEvenOdd = false; // For each entire strip. pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR { PROFILER_ZONE("TwoMatVec.lambda"); const size_t r0 = strip * kRowsPerStrip; detail::FullDotProductsForStrip( df, mat0, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add0, out0 + r0); detail::FullDotProductsForStrip( df, mat1, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add1, out1 + r0); }); // Remaining rows const size_t r0 = kNumStrips * kRowsPerStrip; if (r0 < kOuter) { PROFILER_ZONE("TwoMatVec remainder"); const size_t num_rows = kOuter - r0; detail::FullDotProductsForStrip( df, mat0, mat_ofs, kInner, r0, num_rows, vec_aligned, add0, out0 + r0); detail::FullDotProductsForStrip( df, mat1, mat_ofs, kInner, r0, num_rows, vec_aligned, add1, out1 + r0); } } // With addition template HWY_NOINLINE void TwoMatVecAdd( const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs, const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0, const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1, hwy::ThreadPool& pool) { return TwoMatVecT( mat0, mat1, mat_ofs, vec_aligned, add0, add1, out0, out1, pool); } // Without addition template HWY_NOINLINE void TwoMatVec(const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs, const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out0, float* HWY_RESTRICT out1, hwy::ThreadPool& pool) { TwoMatVecT( mat0, mat1, mat_ofs, vec_aligned, /*add0=*/nullptr, /*add1=*/nullptr, out0, out1, pool); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE(); #endif // NOLINT