// Copyright 2025 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include // sqrtf #include #include #include #include "gemma/activations.h" #include "gemma/gemma.h" #include "gemma/gemma_args.h" #include "gemma/weights.h" #include "paligemma/image.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/profiler.h" // Compiles this file for multiple architectures via "foreach_target.h", to // which we pass the filename via macro 'argument'. // clang-format off #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "gemma/vit.cc" // NOLINT // clang-format on #include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/highway.h" // After highway.h #include "gemma/gemma-inl.h" #include "ops/ops-inl.h" HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { // Wrapper class; holds arguments in member variables to shorten call sites. // The main differences to GemmaAttention are: // - no KV Cache necessary, attention is always all-to-all and not causal. // - no potential wrap-around, attention always goes from 0 to kSeqLen. // - no need for batching, as we are always computing attention for kSeqLen // tokens. // This results in a much simpler implementation. However, to avoid duplicating // code, we should still consider merging the two classes. // TODO(keysers): Refactor to share code with GemmaAttention. class VitAttention { // Computes Q, K, V for all heads, stored in activations_.q. HWY_NOINLINE void ComputeQKV() { PROFILER_ZONE("Gen.VitAttention.QKV"); auto& qkv = activations_.q; HWY_ASSERT(qkv.Rows() == num_tokens_); HWY_ASSERT(qkv.Cols() == layer_config_.heads * 3 * layer_config_.qkv_dim); CallMatMul(activations_.pre_att_rms_out, layer_.vit.qkv_einsum_w, layer_.vit.qkv_einsum_b.PackedScale1(), env_, qkv); } // TODO(philculliton): transition fully to MatMul. HWY_NOINLINE void DotSoftmaxWeightedSumMatrix() { const size_t qkv_dim = layer_config_.qkv_dim; const size_t heads = layer_config_.heads; HWY_ASSERT_M(heads == layer_config_.kv_heads, "Vit expects MHA"); const size_t seq_len = activations_.seq_len; const float query_scale = 1.0f / sqrtf(static_cast(qkv_dim)); PROFILER_ZONE("Gen.VitAttention.DotSoftmax"); // Shift Q, K, VT to MatStorageT. MatStorageT Q("Q2", Extents2D(num_tokens_, qkv_dim), MatPadding::kPacked); MatStorageT K("K2", Extents2D(seq_len, qkv_dim), MatPadding::kPacked); MatStorageT C("C2", Extents2D(num_tokens_, seq_len), MatPadding::kPacked); // Initialize att_out to zero prior to head loop. ZeroInit(activations_.att_out); for (size_t head = 0; head < heads; ++head) { pool_.Run(0, num_tokens_, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { const size_t token = task; float* HWY_RESTRICT q = activations_.q.Row(token) + head * 3 * qkv_dim; // TODO: shift to MatMul with A.scale once MatMul is confirmed working MulByConst(query_scale, q, qkv_dim); hwy::CopyBytes(q, Q.Row(token), qkv_dim * sizeof(float)); }); pool_.Run(0, seq_len, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { const size_t seq_idx = task; float* HWY_RESTRICT k = activations_.q.Row(seq_idx) + head * 3 * qkv_dim + qkv_dim; hwy::CopyBytes(k, K.Row(seq_idx), qkv_dim * sizeof(float)); }); // this produces C, a (num_tokens_, seq_len) matrix of dot products CallMatMul(Q, K, nullptr, env_, C); pool_.Run(0, num_tokens_, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { float* HWY_RESTRICT c = C.Row(task); Softmax(c, C.Cols()); }); pool_.Run(0, num_tokens_, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { size_t token = task; float* HWY_RESTRICT att_out = activations_.att_out.Row(token) + head * qkv_dim; for (size_t i = 0; i < seq_len; ++i) { float* HWY_RESTRICT v = activations_.q.Row(i) + head * 3 * qkv_dim + 2 * qkv_dim; MulByConstAndAdd(C.Row(token)[i], v, att_out, qkv_dim); } }); } } HWY_NOINLINE void DotSoftmaxWeightedSum() { const size_t qkv_dim = layer_config_.qkv_dim; const size_t heads = layer_config_.heads; HWY_ASSERT_M(heads == layer_config_.kv_heads, "Vit expects MHA"); const size_t seq_len = activations_.seq_len; const float query_scale = 1.0f / sqrtf(static_cast(qkv_dim)); PROFILER_ZONE("Gen.VitAttention.DotSoftmax"); // Compute Q.K, softmax, and weighted V. pool_.Run(0, layer_config_.heads * num_tokens_, [&](uint64_t task, size_t /*thread*/) HWY_ATTR { const size_t head = task % layer_config_.heads; const size_t token = task / layer_config_.heads; // Compute Q.K scores, which are "logits" stored in head_att. float* HWY_RESTRICT q = activations_.q.Row(token) + head * 3 * qkv_dim; MulByConst(query_scale, q, qkv_dim); float* HWY_RESTRICT head_att = activations_.att.Row(token) + head * activations_.seq_len; for (size_t i = 0; i < seq_len; ++i) { float* HWY_RESTRICT k = activations_.q.Row(i) + head * 3 * qkv_dim + qkv_dim; head_att[i] = Dot(q, k, qkv_dim); // score = q.k } // SoftMax yields "probabilities" in head_att. Softmax(head_att, seq_len); // Compute weighted sum of v into att_out. float* HWY_RESTRICT att_out = activations_.att_out.Row(token) + head * qkv_dim; hwy::ZeroBytes(att_out, qkv_dim * sizeof(*att_out)); for (size_t i = 0; i < seq_len; ++i) { float* HWY_RESTRICT v = activations_.q.Row(i) + head * 3 * qkv_dim + 2 * qkv_dim; MulByConstAndAdd(head_att[i], v, att_out, qkv_dim); } }); } // Sums encoded (`att_out`) over num_heads (`layer_config_.heads`) and // head_dim (`qkv_dim`) into output (`att_sums`). HWY_NOINLINE void SumHeads() { PROFILER_ZONE("Gen.VitAttention.SumHeads"); auto* bias = layer_.vit.attn_out_b.PackedScale1(); // att_weights and att_out are concatenated heads, each of length // qkv_dim. Thus the [num_tokens_, layer_config_.model_dim] // matmul output is the sum over heads. CallMatMul(activations_.att_out, layer_.vit.attn_out_w, bias, env_, activations_.att_sums); } public: VitAttention(size_t num_tokens, size_t layer_idx, Activations& activations, const LayerWeightsPtrs& layer, MatMulEnv& env) : num_tokens_(num_tokens), activations_(activations), layer_(layer), layer_config_(layer.layer_config), env_(env), pool_(env_.ctx.pools.Pool(0)) {} HWY_INLINE void operator()() { ComputeQKV(); if (activations_.weights_config.wrapping == PromptWrapping::GEMMA_VLM) { DotSoftmaxWeightedSumMatrix(); } else { DotSoftmaxWeightedSum(); } SumHeads(); } private: const size_t num_tokens_; Activations& activations_; const LayerWeightsPtrs& layer_; const LayerConfig& layer_config_; MatMulEnv& env_; hwy::ThreadPool& pool_; }; // Same as FFWNoVit, but with different layer members and no second // gating matrix. void FFWVit(const LayerWeightsPtrs& layer, Activations& activations, MatMulEnv& env) { PROFILER_ZONE("Gen.FFW.ViT"); const LayerConfig& layer_config = layer.layer_config; const bool add_bias = layer_config.ff_biases; const float* bias1 = add_bias ? layer.vit.linear_0_b.PackedScale1() : nullptr; const float* output_bias = add_bias ? layer.vit.linear_1_b.PackedScale1() : nullptr; // Compute the hidden layer activations. CallMatMul(activations.pre_ffw_rms_out, layer.vit.linear_0_w, bias1, env, activations.C1); // Activation (Gelu), store in C1. ActivationBatched(layer_config.activation, activations.C1); // Hidden layer -> output layer. CallMatMul(activations.C1, layer.vit.linear_1_w, output_bias, env, activations.ffw_out); } // Vit transformer layer. Some comments below refer to the Vit implementation in // the Big Vision codebase. See // github.com/google-research/big_vision/blob/main/big_vision/models/vit.py // TODO(keysers): consider adding a wrapper for both LayerNorm with RMSNorm and // try merging this with TransformerLayer. void VitTransformerLayer(size_t num_tokens, const size_t layer_idx, const LayerWeightsPtrs& layer, Activations& activations, MatMulEnv& env) { const size_t model_dim = activations.weights_config.model_dim; auto type = layer.layer_config.type; HWY_DASSERT(type == LayerAttentionType::kVit); (void)type; (void)model_dim; auto& x = activations.x; HWY_DASSERT(x.Rows() == num_tokens); HWY_DASSERT(x.Cols() == model_dim); // y = nn.LayerNorm()(x) // y ~ pre_att_rms_out LayerNormBatched(x, layer.vit.layer_norm_0_scale, layer.vit.layer_norm_0_bias, activations.pre_att_rms_out); // y = out["sa"] = nn.MultiHeadDotProductAttention(...)(y, y) // y ~ att_sums VitAttention(num_tokens, layer_idx, activations, layer, env)(); // x = out["+sa"] = x + y AddFromBatched(activations.att_sums, x); // y = nn.LayerNorm()(x) // y ~ pre_ffw_rms_out LayerNormBatched(x, layer.vit.layer_norm_1_scale, layer.vit.layer_norm_1_bias, activations.pre_ffw_rms_out); // y = out["mlp"] = MlpBlock(...)(y) // y ~ ffw_out FFWVit(layer, activations, env); // x = out["+mlp"] = x + y AddFromBatched(activations.ffw_out, x); } // Gets the patches of the image and embeds them with the image embedding // kernel. The result is stored in activations.x. static HWY_NOINLINE void EmbedImagePatches(const Image& image, const ModelConfig& model_config, const ModelWeightsPtrs& weights, Activations& activations, MatMulEnv& env) { const size_t model_dim = model_config.vit_config.model_dim; const size_t patch_width = model_config.vit_config.patch_width; const size_t seq_len = model_config.vit_config.seq_len; const size_t patch_size = patch_width * patch_width * 3; HWY_DASSERT(weights.vit_img_embedding_kernel.Rows() == model_dim); HWY_DASSERT(weights.vit_img_embedding_kernel.Cols() == patch_size); HWY_DASSERT(activations.x.Cols() == model_dim); (void)model_dim; // img/embedding/kernel has original shape (14, 14, 3, 1152) // H x W x C x D transposed to D x (H x W x C) so here (1152, 14 * 14 * 3) // image_patches is (256, 14 * 14 * 3) // Must be padded, see `DoDecompressA`. MatStorageT image_patches("patches", Extents2D(seq_len, patch_size), MatPadding::kOdd); for (size_t i = 0; i < seq_len; ++i) { image.GetPatch(i, image_patches.Row(i)); } CallMatMul(image_patches, weights.vit_img_embedding_kernel, weights.vit_img_embedding_bias.PackedScale1(), env, activations.x); // Add position embeddings. CallUpcastedActivation(&weights.vit_img_pos_embedding, [&](const auto* weights_t) { AddFromBatched(*weights_t, activations.x); }); } // Prefills the image tokens with the ViT encoder. void PrefillVit(const ModelConfig& model_config, const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const Image& image, ImageTokens& image_tokens, Activations& activations, MatMulEnv& env) { PROFILER_ZONE("Gen.PrefillVit"); const size_t num_tokens = model_config.vit_config.seq_len; const size_t vit_model_dim = model_config.vit_config.model_dim; HWY_ASSERT(num_tokens == activations.x.Rows()); // Embed the image patches. EmbedImagePatches(image, model_config, weights, activations, env); // Go through all layers. for (size_t layer_idx = 0; layer_idx < model_config.vit_config.layer_configs.size(); ++layer_idx) { VitTransformerLayer(num_tokens, layer_idx, *weights.VitLayer(layer_idx), activations, env); } // Final Layernorm. LayerNormBatched(activations.x, weights.vit_encoder_norm_scale, weights.vit_encoder_norm_bias, activations.x); if (model_config.wrapping == PromptWrapping::GEMMA_VLM) { activations.x = AvgPool4x4(activations.x); // Apply soft embedding norm before input projection. CallUpcasted(&weights.mm_embed_norm, [&](const auto* weights_t) { RMSNormInplace(weights_t->PackedScale1(), 0, activations.x.Row(0), vit_model_dim); }); } // Apply head embedding into image_tokens of size of the LLM kModelDim. CallMatMul(activations.x, weights.vit_img_head_kernel, weights.vit_img_head_bias.PackedScale1(), env, image_tokens); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE();