// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Lightweight C++ implementation of the gemma model. // Compiles this file for multiple architectures via "foreach_target.h", to // which we pass the filename via macro 'argument'. #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "gemma/gemma.cc" // NOLINT #include "hwy/foreach_target.h" // IWYU pragma: keep // Must come after foreach_target.h to avoid redefinition errors. #include "gemma/ops.h" #include "hwy/contrib/matvec/matvec-inl.h" #include "hwy/highway.h" // Non-SIMD includes and types. Note that HWY_ONCE is only true on the last // compile pass, whereas we want this defined in the first. #ifndef GEMMA_ONCE #define GEMMA_ONCE #include // sqrtf #include #include #include #include #include #include #include #include #include #include #include #include "compression/io.h" // Path #include "gemma/common.h" #include "gemma/configs.h" #include "gemma/gemma.h" #include "gemma/weights.h" // Placeholder for internal test1, do not remove #include "hwy/aligned_allocator.h" #include "hwy/base.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/profiler.h" #include "hwy/timer.h" // copybara:import_next_line:sentencepiece #include "src/sentencepiece_processor.h" namespace gcpp { // Set this to true to debug tokenizer tokens. constexpr bool kShowTokenization = false; // Must be aligned. template struct Activations { static constexpr size_t kModelDim = TConfig::kModelDim; static constexpr size_t kQKVDim = TConfig::kQKVDim; static constexpr size_t kHeads = TConfig::kHeads; static constexpr size_t kKVHeads = TConfig::kKVHeads; static constexpr size_t kCacheLayerSize = kKVHeads * kQKVDim * 2; static constexpr size_t kCachePosSize = TConfig::kGemmaLayers * kCacheLayerSize; static constexpr size_t kQDim = kHeads == kKVHeads ? kQKVDim * 3 : kQKVDim; std::array x; // input std::array pre_att_rms_out; std::array q; // query vector std::array att; // attention vector std::array att_out; // attention output std::array att_post1; // attention output after linear transformation, per head std::array att_post2; // accumulation of attention outputs over heads std::array bf_pre_ffw_rms_out; std::array ffw_hidden; // For FFW MatMul. std::array C1; std::array C2; // bf_ version can't be used until GeluMulToBF16 issue in FFW() is resolved. // std::array // bf_ffw_hidden; std::array ffw_out; std::array logits; // For bf16/f32 vectors * bf16 matrix: faster to unpack once beforehand, into // per-thread storage. std::array even_odd; // Griffin layer internal activations static constexpr size_t kGriffinDim = TConfig::kGriffinLayers > 0 ? kModelDim : 0; std::array griffin_x; std::array griffin_y; std::array griffin_gate_x; std::array griffin_multiplier; }; namespace { template struct CreateKVCache { KVCache operator()() const { KVCache kv_cache = {}; const size_t size_cache_pos = TConfig::kGemmaLayers * TConfig::kKVHeads * TConfig::kQKVDim; if (size_cache_pos != 0) { const size_t seq_len = TConfig::kSeqLen + kPrefillBatchSize; kv_cache.kv_cache = hwy::AllocateAligned(seq_len * size_cache_pos * 2); } if (TConfig::kGriffinLayers) { constexpr size_t kConv1dWidth = TConfig::kConv1dWidth; const size_t conv1d_cache_size = TConfig::kGriffinLayers * (kConv1dWidth == 0 ? 0 : kConv1dWidth - 1) * TConfig::kModelDim; if (conv1d_cache_size != 0) { kv_cache.conv1d_cache = hwy::AllocateAligned(conv1d_cache_size); hwy::ZeroBytes(kv_cache.conv1d_cache.get(), conv1d_cache_size * sizeof(kv_cache.conv1d_cache[0])); } const size_t rglru_cache_size = TConfig::kGriffinLayers * TConfig::kModelDim; if (rglru_cache_size != 0) { kv_cache.rglru_cache = hwy::AllocateAligned(rglru_cache_size); hwy::ZeroBytes(kv_cache.rglru_cache.get(), rglru_cache_size * sizeof(kv_cache.rglru_cache[0])); } } // kGriffinLayers return kv_cache; } }; } // namespace KVCache KVCache::Create(Model model_type) { // TWeight=float is a placeholder and unused because CreateKVCache does not // use TConfig::Weight. return CallForModel(model_type); } class GemmaTokenizer::Impl { public: Impl() = default; explicit Impl(const Path& tokenizer_path) { PROFILER_ZONE("Startup.tokenizer"); spp_ = std::make_unique(); if (!spp_->Load(tokenizer_path.path).ok()) { HWY_ABORT("Failed to load the tokenizer file."); } } bool Encode(const std::string& input, std::vector* pieces) const { return spp_ && spp_->Encode(input, pieces).ok(); } bool Encode(const std::string& input, std::vector* ids) const { if constexpr (kShowTokenization) { bool is_ok = spp_ && spp_->Encode(input, ids).ok(); for (int i = 0; i < static_cast(ids->size()); i++) { fprintf(stderr, "%3d: %d\n", i, (*ids)[i]); } return is_ok; } else { return spp_ && spp_->Encode(input, ids).ok(); } } // Given a sequence of ids, decodes it into a detokenized output. bool Decode(const std::vector& ids, std::string* detokenized) const { return spp_ && spp_->Decode(ids, detokenized).ok(); } private: std::unique_ptr spp_; }; GemmaTokenizer::GemmaTokenizer(const Path& tokenizer_path) { impl_ = std::make_unique(tokenizer_path); } // Default suffices, but they must be defined after GemmaTokenizer::Impl. GemmaTokenizer::GemmaTokenizer() = default; GemmaTokenizer::~GemmaTokenizer() = default; GemmaTokenizer::GemmaTokenizer(GemmaTokenizer&& other) = default; GemmaTokenizer& GemmaTokenizer::operator=(GemmaTokenizer&& other) = default; bool GemmaTokenizer::Encode(const std::string& input, std::vector* pieces) const { return impl_->Encode(input, pieces); } bool GemmaTokenizer::Encode(const std::string& input, std::vector* ids) const { return impl_->Encode(input, ids); } // Given a sequence of ids, decodes it into a detokenized output. bool GemmaTokenizer::Decode(const std::vector& ids, std::string* detokenized) const { return impl_->Decode(ids, detokenized); } // Placeholder for internal test2, do not remove } // namespace gcpp #endif // GEMMA_ONCE // SIMD code, compiled once per target. HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { namespace { template HWY_NOINLINE void GriffinRecurrent( size_t batch_start, size_t num_tokens, size_t layer, Activations& activations, const LayerT* layer_weights, KVCache& kv_cache, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Griffin"); namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; HWY_DASSERT(num_tokens <= kBatchSize); static constexpr size_t kModelDim = gcpp::Activations::kModelDim; static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth; static constexpr size_t kHeads = TConfig::kHeads; // X / Y linear layers. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t batch_offset = batch_idx * kModelDim; float* HWY_RESTRICT y = activations.griffin_y.data() + batch_offset; float* HWY_RESTRICT x = activations.griffin_x.data() + batch_offset; TwoMatVecAdd( layer_weights->griffin.linear_x_w, layer_weights->griffin.linear_y_w, 0, activations.pre_att_rms_out.data() + batch_offset, /*add0=*/layer_weights->griffin.linear_x_biases.data(), /*add1=*/layer_weights->griffin.linear_y_biases.data(), /*out0=*/x, /*out1=*/y, pool); Gelu(y, kModelDim); } // Conv1D. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t batch_offset = batch_idx * kModelDim; const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT x = activations.griffin_x.data() + batch_offset; HWY_FULL(float) df; HWY_DASSERT(kModelDim % Lanes(df) == 0); const size_t layer_offset = layer * kModelDim * (kConv1dWidth - 1); // cache[i] = input at time t-i. float* HWY_RESTRICT cache[HWY_MAX(kConv1dWidth, 1)]; cache[0] = x; for (size_t i = 1; i < kConv1dWidth; i++) { cache[i] = kv_cache.conv1d_cache.get() + layer_offset + ((pos + kConv1dWidth - 1 - i) % (kConv1dWidth - 1)) * kModelDim; } for (size_t i = 0; i < kModelDim; i += Lanes(df)) { auto xv = hn::Load(df, x + i); auto accum0 = hn::Load(df, layer_weights->griffin.conv_biases.data() + i); auto accum1 = hn::Zero(df); static_assert(kConv1dWidth % 2 == 0, "Conv width must be even"); for (size_t l = 0; 2 * l < kConv1dWidth; l++) { auto wv0 = hn::Load(df, layer_weights->griffin.conv_w.data() + (kConv1dWidth - 1 - 2 * l) * kModelDim + i); auto wv1 = hn::Load(df, layer_weights->griffin.conv_w.data() + (kConv1dWidth - 2 - 2 * l) * kModelDim + i); accum0 = hn::MulAdd(wv0, hn::Load(df, cache[l * 2] + i), accum0); accum1 = hn::MulAdd(wv1, hn::Load(df, cache[l * 2 + 1] + i), accum1); } hn::Store(hn::Add(accum0, accum1), df, x + i); hn::Store(xv, df, cache[HWY_MAX(kConv1dWidth, 1) - 1] + i); } } // RGLRU for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t batch_offset = batch_idx * kModelDim; const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT y = activations.griffin_y.data() + batch_offset; float* HWY_RESTRICT x = activations.griffin_x.data() + batch_offset; float* HWY_RESTRICT gate_x = activations.griffin_gate_x.data() + batch_offset; float* HWY_RESTRICT a = activations.griffin_multiplier.data() + batch_offset; float* HWY_RESTRICT rnn_state = kv_cache.rglru_cache.get() + layer * kModelDim; pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR { constexpr size_t kHeadDim = kModelDim / kHeads; constexpr size_t kMatrixSize = kHeadDim * kHeadDim; size_t head_offset = head * kHeadDim; TwoOfsMatVecAddLoop( layer_weights->griffin.gate_w, kMatrixSize * head, kMatrixSize * (kHeads + head), x + head_offset, /*add0=*/layer_weights->griffin.gate_biases.data() + head_offset, /*add1=*/layer_weights->griffin.gate_biases.data() + kModelDim + head_offset, /*out0=*/gate_x + head_offset, /*out1=*/a + head_offset); Sigmoid(gate_x + head_offset, kHeadDim); Sigmoid(a + head_offset, kHeadDim); const auto fn_mul = [](D d, hn::Vec x, hn::Vec gate_x) HWY_ATTR { return hn::Mul(x, gate_x); }; hn::Transform1(D(), a + head_offset, kHeadDim, layer_weights->griffin.a.data() + head_offset, fn_mul); hn::Transform1(D(), x + head_offset, kHeadDim, gate_x + head_offset, fn_mul); // RNN scan HWY_FULL(float) df; HWY_DASSERT(kHeadDim % Lanes(df) == 0); for (size_t i = 0; i < kHeadDim; i += Lanes(df)) { auto log_a = hn::Load(df, a + head_offset + i); auto gated_x = hn::Load(df, x + head_offset + i); auto rnn = hn::Load(df, rnn_state + head_offset + i); auto a = hn::Exp(df, log_a); auto x_multiplier = hn::Sqrt(hn::NegMulAdd(a, a, hn::Set(df, 1.0))); if (pos == 0) { x_multiplier = hn::Set(df, 1.0); } auto new_x = hn::MulAdd(x_multiplier, gated_x, hn::Mul(a, rnn)); hn::Store(new_x, df, rnn_state + head_offset + i); // Join branches. auto yv = hn::Load(df, y + head_offset + i); auto pre_out = hn::Mul(yv, new_x); hn::Store(pre_out, df, x + head_offset + i); } }); } // Final linear layer. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t batch_offset = batch_idx * kModelDim; float* HWY_RESTRICT x = activations.griffin_x.data() + batch_offset; float* out_ptr = activations.att_post2.data() + batch_idx * kModelDim; MatVecAdd( layer_weights->griffin.linear_out_w, 0, x, layer_weights->griffin.linear_out_biases.data(), activations.even_odd.data(), out_ptr, pool); } } template HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer, Activations& activations, const LayerT* layer_weights, KVCache& kv_cache, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Attention"); HWY_DASSERT(num_tokens <= kBatchSize); static constexpr size_t kQKVDim = gcpp::Activations::kQKVDim; static constexpr size_t kCachePosSize = gcpp::Activations::kCachePosSize; static constexpr size_t kCacheLayerSize = gcpp::Activations::kCacheLayerSize; static constexpr size_t kModelDim = gcpp::Activations::kModelDim; static constexpr size_t kHeads = TConfig::kHeads; static constexpr size_t kKVHeads = TConfig::kKVHeads; static constexpr size_t kSeqLen = TConfig::kSeqLen; static const float kQueryScale = static_cast(1.0 / sqrt(static_cast(kQKVDim))); auto Attn = [&](float* q, uint64_t head, size_t head_offset, size_t batch_idx, size_t thread) HWY_ATTR { const size_t pos = batch_start + batch_idx; // Calculate scores float* HWY_RESTRICT head_att = activations.att.data() + head * kSeqLen + batch_idx * kHeads * kSeqLen; Rope(q, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos); MulByConst(kQueryScale, q, kQKVDim); // Compute Q dot K scores const size_t start_pos = pos - std::min(kSeqLen - 1, pos); for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) { const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset; const float* HWY_RESTRICT k2 = kv_cache.kv_cache.get() + kv_offset; const float score = Dot(q, k2, kQKVDim); head_att[pos2 % kSeqLen] = score; } Softmax(head_att, std::min(pos + 1, kSeqLen)); // Weighted summation float* HWY_RESTRICT att_out = activations.att_out.data() + head * kQKVDim + batch_idx * kHeads * kQKVDim; hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out)); for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) { const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset; float* HWY_RESTRICT v2 = kv_cache.kv_cache.get() + kv_offset + kQKVDim; MulByConstAndAdd(head_att[pos2 % kSeqLen], v2, att_out, kQKVDim); } }; if constexpr (kHeads == kKVHeads) { // Multi-Head Attention calculates qkv using q as scratch space. static_assert(TConfig::kInterleaveQKV); MatMul_4x4_Batch( num_tokens, activations.pre_att_rms_out.data(), layer_weights->qkv_einsum_w.data(), activations.q.data(), pool); } else { MatMul_4x4_Batch( num_tokens, activations.pre_att_rms_out.data(), layer_weights->qkv_einsum_w.data(), activations.q.data(), pool); } for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const float* x = activations.pre_att_rms_out.data() + batch_idx * kModelDim; // QKV projections: if constexpr (kHeads != kKVHeads) { const size_t pos = batch_start + batch_idx; const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; // TODO: requires MatMul support for offsets. MatVec( layer_weights->qkv_einsum_w, kHeads * kQKVDim * kModelDim, x, activations.even_odd.data(), kv, pool); } } // Positional encodings for k: const size_t num_kv_tasks = kKVHeads * num_tokens; pool.Run(0, num_kv_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR { const size_t head = task % kKVHeads; const size_t batch_idx = task / kKVHeads; const size_t pos = batch_start + batch_idx; const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim * 2; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; if constexpr (kHeads == kKVHeads) { // For MHA, copy kv into the KV cache from scratch space (see above). const float* HWY_RESTRICT q = activations.q.data() + (batch_idx * kHeads + head) * kQKVDim * 3; memcpy(kv, q + kQKVDim, 2 * kQKVDim * sizeof(float)); } Rope(kv, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos); }); static_assert((TConfig::kHeads % TConfig::kKVHeads) == 0, "query heads must be a multiple of key-value heads"); static constexpr size_t kGroupHeads = TConfig::kHeads / TConfig::kKVHeads; static constexpr size_t kQOffsetScale = (kHeads == kKVHeads) ? 3 : 1; const size_t num_q_tasks = kHeads * num_tokens; pool.Run(0, num_q_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR { const size_t head = task % kHeads; const size_t batch_idx = task / kHeads; const size_t head_offset = (head / kGroupHeads) * kQKVDim * 2; float* HWY_RESTRICT q = activations.q.data() + (batch_idx * kHeads + head) * kQKVDim * kQOffsetScale; Attn(q, head, head_offset, batch_idx, thread); }); for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { // TODO(szabadka) Use a single MatVecAdd like in GriffinRecurrent() after // rearranging the weights. float* HWY_RESTRICT att_out = activations.att_out.data() + batch_idx * kHeads * kQKVDim; float* HWY_RESTRICT layer_out = activations.att_post2.data() + batch_idx * kModelDim; MatVecT( layer_weights->attn_vec_einsum_w, 0, att_out, layer_weights->attention_output_biases.data(), activations.even_odd.data(), layer_out, pool); for (size_t head = 1; head < kHeads; ++head) { float* HWY_RESTRICT head_out = activations.att_post1.data() + head * kBatchSize * kModelDim; // TODO: requires MatMul support for offsets. MatVec( layer_weights->attn_vec_einsum_w, head * kModelDim * kQKVDim, att_out + head * kQKVDim, activations.even_odd.data(), head_out, pool); AddFrom(head_out, layer_out, kModelDim); } } } template HWY_NOINLINE void FFW(Activations& activations, size_t num_tokens, const LayerT* layer_weights, hwy::ThreadPool& pool) { HWY_DASSERT(num_tokens <= kBatchSize); static constexpr size_t kModelDim = TConfig::kModelDim; static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim; float* HWY_RESTRICT even_odd = activations.even_odd.data(); // TODO: MatMul does not yet support adding another matrix to the result. if constexpr (!TConfig::kFFBiases) { PROFILER_ZONE("Gen.FFW.GatedGELU"); // MatMul expects col-major B, which is what we have: kModelDim consecutive // elements in memory, repeated kFFHiddenDim times. const auto b1 = layer_weights->gating_einsum_w.data(); constexpr size_t kColsA = kModelDim; constexpr size_t kColsB = kFFHiddenDim; const auto b2 = b1 + kColsA * kColsB; auto A = activations.bf_pre_ffw_rms_out.data(); // Will go through GELU. MatMul_4x4_Batch(num_tokens, A, b1, activations.C1.data(), pool); // What to multiply by. MatMul_4x4_Batch(num_tokens, A, b2, activations.C2.data(), pool); // Gelu and multiply by gate. namespace hn = hwy::HWY_NAMESPACE; using DF = hn::ScalableTag; using VF = hn::Vec; hn::Transform1(DF(), activations.C1.data(), kFFHiddenDim * num_tokens, activations.C2.data(), [](DF df, VF v, VF mul) HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); }); MatMul_4x4_Batch(num_tokens, activations.C1.data(), layer_weights->linear_w.data(), activations.ffw_out.data(), pool); } else { for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t hidden_offset = batch_idx * kFFHiddenDim * 2; const hwy::bfloat16_t* HWY_RESTRICT vec = activations.bf_pre_ffw_rms_out.data() + batch_idx * kModelDim; float* HWY_RESTRICT out = activations.ffw_hidden.data() + hidden_offset; float* HWY_RESTRICT out_mul = out + kFFHiddenDim; PROFILER_ZONE("Gen.FFW.GatedGELU"); // Same matrix, first and second half of rows. Could fuse into one MatVec. MatVecT( layer_weights->gating_einsum_w, kFFHiddenDim * kModelDim, vec, TConfig::kFFBiases ? layer_weights->ffw_gating_biases.data() + kFFHiddenDim : nullptr, even_odd, out_mul, pool); // Gate, will go through the nonlinearity. MatVecT( layer_weights->gating_einsum_w, 0, vec, layer_weights->ffw_gating_biases.data(), even_odd, out, pool); namespace hn = hwy::HWY_NAMESPACE; using DF = hn::ScalableTag; using VF = hn::Vec; hn::Transform1(DF(), out, kFFHiddenDim, out_mul, [](DF df, VF v, VF mul) HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); }); MatVecT( layer_weights->linear_w, 0, activations.ffw_hidden.data() + hidden_offset, layer_weights->ffw_output_biases.data(), even_odd, activations.ffw_out.data() + batch_idx * kModelDim, pool); } } } // The below "batched" versions are just simple loops for now. template static void RMSNormBatched(size_t num_tokens, const float* activations, const WeightT* weights, OutT* out, const size_t model_dim) { HWY_DASSERT(num_tokens <= kBatchSize); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { RMSNorm(activations + token_idx * model_dim, weights, out + token_idx * model_dim, model_dim); } } template static void RMSNormInplaceBatched(size_t num_tokens, const WeightT* weights, InOutT* inout, const size_t model_dim) { HWY_DASSERT(num_tokens <= kBatchSize); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { RMSNormInplace(weights, inout + token_idx * model_dim, model_dim); } } template static void AddFromBatched(size_t num_tokens, const float* other, float* x, const size_t model_dim) { HWY_DASSERT(num_tokens <= kBatchSize); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { AddFrom(other + token_idx * model_dim, x + token_idx * model_dim, model_dim); } } // Placeholder for internal test3, do not remove template HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos, const WeightArrayT& weights, Activations& activations, KVCache& kv_cache, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Prefill\\Att\\FFW"); static constexpr size_t kModelDim = TConfig::kModelDim; GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling = EmbeddingScaling(); pool.Run( 0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR { const int token = tokens[token_idx]; HWY_DASSERT(token >= 0); HWY_DASSERT(token < TConfig::kVocabSize); Decompress(weights.embedder_input_embedding, token * kModelDim, activations.x.data() + token_idx * kModelDim, kModelDim); MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim, kModelDim); if constexpr (TConfig::kAbsolutePE) { AddAbsolutePositionalEmbeddings( activations.x.data() + token_idx * kModelDim, kModelDim, pos); }; }); for (size_t layer = 0; layer < TConfig::kLayers; ++layer) { auto type = TConfig::kLayerConfig[layer]; const auto* layer_weights = weights.GetLayer(layer); size_t layer_of_type = NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer); RMSNormBatched(num_tokens, activations.x.data(), layer_weights->pre_attention_norm_scale.data(), activations.pre_att_rms_out.data(), kModelDim); if (type == LayerAttentionType::kGemma) { Attention(pos, num_tokens, layer_of_type, activations, layer_weights, kv_cache, pool); } else { GriffinRecurrent(pos, num_tokens, layer_of_type, activations, layer_weights, kv_cache, pool); } if (TConfig::kPostNormScale) { RMSNormInplaceBatched( num_tokens, layer_weights->post_attention_norm_scale.data(), activations.att_post2.data(), kModelDim); } AddFromBatched(num_tokens, activations.att_post2.data(), activations.x.data(), kModelDim); RMSNormBatched(num_tokens, activations.x.data(), layer_weights->pre_ffw_norm_scale.data(), activations.bf_pre_ffw_rms_out.data(), kModelDim); FFW(activations, num_tokens, layer_weights, pool); if (TConfig::kPostNormScale) { RMSNormInplaceBatched( num_tokens, layer_weights->post_ffw_norm_scale.data(), activations.ffw_out.data(), kModelDim); } AddFromBatched(num_tokens, activations.ffw_out.data(), activations.x.data(), kModelDim); } // foreach layer RMSNormInplaceBatched(num_tokens, weights.final_norm_scale.data(), activations.x.data(), kModelDim); } // Compute the transformer for a batch of input tokens. During generation, // we usually have num_tokens == 1 (and also kBatchSize == 1). template HWY_NOINLINE void Transformer(const int* tokens, size_t num_tokens, size_t pos, const WeightArrayT& weights, Activations& activations, KVCache& kv_cache, hwy::ThreadPool& pool, const LayersOutputFunc& layers_output) { HWY_ASSERT(num_tokens <= kBatchSize); if (layers_output) { for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { float token_f = tokens[token_idx]; layers_output(pos + token_idx, "Tokens", &token_f, 1); } } static constexpr size_t kModelDim = TConfig::kModelDim; GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling = EmbeddingScaling(); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { const int token = tokens[token_idx]; HWY_DASSERT(token >= 0); HWY_DASSERT(token < TConfig::kVocabSize); Decompress(weights.embedder_input_embedding, token * kModelDim, activations.x.data() + token_idx * kModelDim, kModelDim); MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim, kModelDim); if constexpr (TConfig::kAbsolutePE) { AddAbsolutePositionalEmbeddings( activations.x.data() + token_idx * kModelDim, kModelDim, pos + token_idx); }; } for (size_t layer = 0; layer < TConfig::kLayers; ++layer) { auto type = TConfig::kLayerConfig[layer]; const auto* layer_weights = weights.GetLayer(layer); size_t layer_of_type = NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer); RMSNormBatched(num_tokens, activations.x.data(), layer_weights->pre_attention_norm_scale.data(), activations.pre_att_rms_out.data(), kModelDim); if (type == LayerAttentionType::kGemma) { Attention(pos, num_tokens, layer_of_type, activations, layer_weights, kv_cache, pool); } else { GriffinRecurrent(pos, num_tokens, layer_of_type, activations, layer_weights, kv_cache, pool); } if (TConfig::kPostNormScale) { RMSNormInplaceBatched( num_tokens, layer_weights->post_attention_norm_scale.data(), activations.att_post2.data(), kModelDim); } AddFromBatched(num_tokens, activations.att_post2.data(), activations.x.data(), kModelDim); RMSNormBatched(num_tokens, activations.x.data(), layer_weights->pre_ffw_norm_scale.data(), activations.bf_pre_ffw_rms_out.data(), kModelDim); FFW(activations, num_tokens, layer_weights, pool); if (TConfig::kPostNormScale) { RMSNormInplaceBatched( num_tokens, layer_weights->post_ffw_norm_scale.data(), activations.ffw_out.data(), kModelDim); } AddFromBatched(num_tokens, activations.ffw_out.data(), activations.x.data(), kModelDim); if (layers_output) { std::string block_name = "blocks." + std::to_string(layer); for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { layers_output(pos + token_idx, block_name, activations.x.data() + token_idx * kModelDim, kModelDim); } } } // Placeholder for internal test4, do not remove RMSNormInplaceBatched(num_tokens, weights.final_norm_scale.data(), activations.x.data(), kModelDim); if (layers_output) { for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) { layers_output(pos + token_idx, "final_norm", activations.x.data() + token_idx * kModelDim, kModelDim); } } } template void RangeChecks(size_t& max_tokens, size_t& max_generated_tokens, size_t& prompt_size) { if (!TConfig::kUseLocalAttention) { if (max_tokens > TConfig::kSeqLen) { fprintf(stderr, "WARNING: max_tokens %zu > kSeqLen %d, truncating.\n", max_tokens, TConfig::kSeqLen); max_tokens = static_cast(TConfig::kSeqLen); } } if (max_generated_tokens > max_tokens) { fprintf(stderr, "WARNING: max_generated_tokens %zu > max_tokens %zu, truncating.\n", max_generated_tokens, max_tokens); max_generated_tokens = max_tokens - 1; } if (!TConfig::kUseLocalAttention) { if (prompt_size + max_generated_tokens > max_tokens) { fprintf(stderr, "WARNING: prompt_size %zu + max_generated_tokens %zu > " "max_tokens %zu, truncating to ", prompt_size, max_generated_tokens, max_tokens); prompt_size = std::min(prompt_size, max_tokens - max_generated_tokens); fprintf(stderr, "%zu\n", prompt_size); } } } template const CompressedWeights& GetWeights(const ByteStorageT& weights_u8) { return *reinterpret_cast*>(weights_u8.get()); } template Activations& GetActivations(const ByteStorageT& state_u8) { return *reinterpret_cast*>(state_u8.get()); } } // namespace template void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8, const ByteStorageT& decode_u8, const RuntimeConfig& runtime_config, const std::vector& prompt, size_t pos, KVCache& kv_cache, hwy::ThreadPool& pool, TimingInfo& timing_info) { const CompressedWeights& weights = GetWeights(weights_u8); auto& prefill_activations = GetActivations(prefill_u8); auto& activations = GetActivations(decode_u8); static constexpr size_t kVocabSize = TConfig::kVocabSize; size_t prompt_size = prompt.size(); size_t max_tokens = runtime_config.max_tokens; size_t max_generated_tokens = runtime_config.max_generated_tokens; RangeChecks(max_tokens, max_generated_tokens, prompt_size); if (pos >= max_tokens) { fprintf(stderr, "Warning: pos %zu >= max_tokens %zu, aborting.\n", pos, max_tokens); return; } HWY_ASSERT(prompt_size > 0); // If no sample_func is provided, we use top-k sampling. const SampleFunc sample_token = runtime_config.sample_func ? runtime_config.sample_func : [&](const float* logits, size_t vocab_size) -> int { return SampleTopK(logits, vocab_size, *runtime_config.gen, runtime_config.temperature, runtime_config.accept_token); }; // pos indexes the KV cache. In the first turn of a chat, pos = 0. // // After the first turn, pos gets passed in with > 0 corresponding to the // current token position in the KV cache. // // pos_offset keeps track of the relative position within the turn, starting // at 0 each turn. During prefill, pos_offset corresponds to the index into // the prompt vector. // // In single-turn (non-chat) usage, pos and pos_offset start at 0 and are // always equal. size_t pos_offset = 0; // offset relative to pos const double prefill_start = hwy::platform::Now(); // Prefill stops before prompt_size - 1 since the last prompt token is the // first input token for generation. while (pos_offset < prompt_size - 1) { const size_t batch_size = std::min(kPrefillBatchSize, prompt_size - 1 - pos_offset); HWY_DASSERT(batch_size <= kPrefillBatchSize); HWY_DASSERT(pos_offset + batch_size <= prompt_size - 1); const int* batch_tokens = prompt.data() + pos_offset; Prefill(batch_tokens, batch_size, pos, weights, prefill_activations, kv_cache, pool); for (size_t idx = 0; idx < batch_size; ++idx) { if (!runtime_config.stream_token(batch_tokens[idx], 0.0f)) return; } pos += batch_size; pos_offset += batch_size; } if (runtime_config.verbosity >= 2) { const double prefill_end = hwy::platform::Now(); timing_info.prefill_tok_sec = static_cast(pos_offset) / (prefill_end - prefill_start); } // Start generation. const double gen_start = hwy::platform::Now(); HWY_DASSERT(pos_offset == prompt_size - 1); size_t pos_gen_start = pos_offset; int token = prompt.at(pos_offset); // The loop below is not yet prepared for batch size > 1. HWY_ASSERT(kDecodeBatchSize == 1); if (!runtime_config.stream_token(token, 0.0f)) return; for (size_t generate_pos = 0; pos < max_tokens && generate_pos < max_generated_tokens; ++pos, ++pos_offset, ++generate_pos) { Transformer(&token, kDecodeBatchSize, pos, weights, activations, kv_cache, pool, runtime_config.layers_output); float token_logit = 0.0f; // The condition below is always true if we are doing Prefill above. // We keep it here for clarity so that the code is correct even if Prefill // is disabled. const bool is_generating_phase = pos_offset >= prompt_size - 1; if (is_generating_phase) { PROFILER_ZONE("Gen.Embedding"); // Compute logits from last layer activations. MatVec( weights.embedder_input_embedding, 0, activations.x.data(), activations.even_odd.data(), activations.logits.data(), pool); LogitsSoftCap(30.0f, activations.logits.data(), kVocabSize); // Barrier: must have all logits so we can subtract max. Softmax(activations.logits.data(), kVocabSize); token = sample_token(activations.logits.data(), kVocabSize); token_logit = activations.logits[token]; if (generate_pos == 0) { timing_info.time_to_first_token = hwy::platform::Now() - gen_start; } } else { // We would take this branch if we were not doing Prefill but would // process the tokens of the prompt one at a time. token = prompt.at(pos_offset + 1); } if (!runtime_config.stream_token(token, token_logit)) { token = runtime_config.eos_id; } if (token == runtime_config.eos_id) { break; } } if (runtime_config.verbosity >= 2) { const double gen_end = hwy::platform::Now(); timing_info.gen_tok_sec = static_cast(pos_offset - pos_gen_start) / (gen_end - gen_start); } } } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace gcpp { namespace { template struct AllocatePrefill { ByteStorageT operator()() const { return AllocateSizeof>(); } }; template struct AllocateDecode { ByteStorageT operator()() const { return AllocateSizeof>(); } }; } // namespace Gemma::Gemma(const Path& tokenizer_path, const Path& weights, Model model_type, Type weight_type, hwy::ThreadPool& pool) : pool_(pool), tokenizer_(tokenizer_path), model_type_(model_type), weight_type_(weight_type) { weights_u8_ = LoadCompressedWeights(weights, model_type, weight_type, pool); prefill_u8_ = CallForModelAndWeight(model_type, weight_type); decode_u8_ = CallForModelAndWeight(model_type, weight_type); } Gemma::Gemma(GemmaTokenizer&& tokenizer, Model model_type, Type weight_type, hwy::ThreadPool& pool) : pool_(pool), tokenizer_(std::move(tokenizer)), model_type_(model_type), weight_type_(weight_type) { HWY_ASSERT(weight_type == Type::kF32); weights_u8_ = CallForModel( model_type, pool); prefill_u8_ = CallForModelAndWeight(model_type, weight_type); decode_u8_ = CallForModelAndWeight(model_type, weight_type); } Gemma::~Gemma() { CallForModelAndWeight(model_type_, weight_type_, weights_u8_); } void Gemma::Generate(const RuntimeConfig& runtime_config, const std::vector& prompt, size_t start_pos, KVCache& kv_cache, TimingInfo& timing_info) { pool_.SetWaitMode(hwy::PoolWaitMode::kSpin); GEMMA_EXPORT_AND_DISPATCH( model_type_, weight_type_, GenerateT, (weights_u8_, prefill_u8_, decode_u8_, runtime_config, prompt, start_pos, kv_cache, pool_, timing_info)); pool_.SetWaitMode(hwy::PoolWaitMode::kBlock); } std::vector WrapAndTokenize(const GemmaTokenizer& tokenizer, const ModelTraining training, size_t pos, std::string& prompt) { // Instruction-tuned models are trained to expect control tokens. if (training == ModelTraining::GEMMA_IT) { // Prepend "" if this is a multi-turn dialogue continuation. const std::string start = (pos == 0) ? "user\n" : "\nuser\n"; prompt = start + prompt + "\nmodel\n"; } std::vector tokens; HWY_ASSERT(tokenizer.Encode(prompt, &tokens)); // Both pre-trained and instruction-tuned require BOS as first token. if (pos == 0) { tokens.insert(tokens.begin(), gcpp::BOS_ID); } return tokens; } } // namespace gcpp #endif // HWY_ONCE