// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "gtest/gtest.h" #include "backprop/activations.h" #include "backprop/backward.h" #include "backprop/forward.h" #include "backprop/optimizer.h" #include "backprop/prompt.h" #include "backprop/sampler.h" #include "compression/shared.h" #include "gemma/configs.h" #include "gemma/gemma.h" #include "gemma/tokenizer.h" #include "gemma/weights.h" #include "ops/ops.h" #include "util/allocator.h" #include "util/basics.h" #include "util/threading.h" #include "hwy/contrib/thread_pool/thread_pool.h" namespace gcpp { TEST(OptimizeTest, GradientDescent) { gcpp::ThreadingArgs threading_args; threading_args.max_packages = 1; threading_args.max_clusters = 1; threading_args.pin = Tristate::kFalse; ThreadingContext::SetArgs(threading_args); MatMulEnv env(ThreadingContext::Get()); const Allocator& allocator = env.ctx.allocator; hwy::ThreadPool& pool = env.ctx.pools.Pool(); std::mt19937 gen(42); ModelConfig config(Model::GEMMA_TINY, Type::kF32, ChooseWrapping(Model::GEMMA_TINY)); config.eos_id = ReverseSequenceSampler::kEndToken; WeightsOwner grad(Type::kF32), grad_m(Type::kF32), grad_v(Type::kF32); grad.AllocateForTest(config, pool); grad_m.AllocateForTest(config, pool); grad_v.AllocateForTest(config, pool); grad_m.ZeroInit(); grad_v.ZeroInit(); ForwardPass forward(config), backward(config); KVCache kv_cache = KVCache::Create(config, /*prefill_tbatch_size=*/16); RowVectorBatch inv_timescale = CreateInvTimescale( allocator, config.layer_configs[0].qkv_dim, config.layer_configs[0].post_qk == PostQKType::HalfRope); Gemma gemma(config, GemmaTokenizer(kMockTokenizer), env); const auto generate = [&](const std::vector& prompt) { std::vector reply; auto stream_token = [&reply](int token, float) { reply.push_back(token); return token != ReverseSequenceSampler::kEndToken; }; RuntimeConfig runtime = { .max_generated_tokens = 16, .temperature = 1.0f, .gen = &gen, .verbosity = 0, .stream_token = stream_token, }; TimingInfo timing_info; gemma.Generate(runtime, prompt, 0, kv_cache, timing_info); return reply; }; // Sanity check of reply tokens. // 1) Its length should be greater than the prompt. // 2) The prompt should be a prefix of the reply. auto verify = [&](const Prompt& prompt) { const std::vector& context = prompt.context(); std::vector reply = generate(context); if (reply.size() <= context.size()) return false; return std::equal(context.begin(), context.end(), reply.begin(), reply.begin() + context.size()); }; gemma.MutableWeights().RandInit(1.0f, gen); gemma.MutableWeights().Reshape(pool); printf("Initial weights:\n"); gemma.MutableWeights().LogWeightStatsF32(); constexpr size_t kBatchSize = 8; constexpr float kAlpha = 0.001f; constexpr float kBeta1 = 0.9f; constexpr float kBeta2 = 0.999f; constexpr float kEpsilon = 1e-8f; constexpr float kMaxLoss = 20.0f; ReverseSequenceSampler training_task({ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1}); size_t steps = 0; size_t num_ok; for (; steps < 1000; ++steps) { std::mt19937 sgen(42); grad.ZeroInit(); float total_loss = 0.0f; num_ok = 0; for (size_t i = 0; i < kBatchSize; ++i) { Prompt prompt = training_task.Sample(sgen); total_loss += CrossEntropyLossForwardPass( prompt, *gemma.Weights().GetF32(), forward, inv_timescale, pool); CrossEntropyLossBackwardPass(prompt, *gemma.Weights().GetF32(), forward, *grad.GetF32(), backward, inv_timescale, pool); gemma.MutableWeights().Reshape(pool); num_ok += verify(prompt) ? 1 : 0; } total_loss /= kBatchSize; AdamUpdate(grad, kAlpha, kBeta1, kBeta2, kEpsilon, steps + 1, gemma.Weights(), grad_m, grad_v, pool); printf("step: %zu total_loss: %.15f num_ok: %zu/%zu\n", steps, total_loss, num_ok, kBatchSize); if (steps % 100 == 0) { printf("Batch gradient:\n"); grad.LogWeightStatsF32(); } if (total_loss < kMaxLoss) break; // Done } printf("Num steps: %zu\n", steps); printf("Final weights:\n"); gemma.MutableWeights().LogWeightStatsF32(); EXPECT_LT(steps, 50); EXPECT_EQ(num_ok, kBatchSize); } } // namespace gcpp