// Copyright 2023 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // End to end test of MatMul, comparing against a reference implementation. #include "hwy/detect_compiler_arch.h" #ifndef HWY_DISABLED_TARGETS // Exclude HWY_SCALAR due to 2x bf16 -> f32, and Armv7 NEON because we require // double-precision support. #if HWY_ARCH_ARM_V7 #define HWY_DISABLED_TARGETS (HWY_SCALAR | HWY_NEON) #else #define HWY_DISABLED_TARGETS HWY_SCALAR #endif #endif #include #include #include #include "compression/compress.h" #include "compression/shared.h" #include "ops/matmul.h" #include "util/allocator.h" #include "util/basics.h" #include "util/threading.h" #include "hwy/base.h" #include "hwy/contrib/thread_pool/thread_pool.h" // clang-format off #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "ops/matmul_test.cc" // NOLINT // clang-format on #include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/highway.h" // After highway.h #include "compression/compress-inl.h" #include "ops/dot-inl.h" #include "ops/matmul-inl.h" #include "hwy/tests/test_util-inl.h" HWY_BEFORE_NAMESPACE(); namespace gcpp { // For running TestTiny only once. Defined within HWY_ONCE. extern int64_t first_target; namespace HWY_NAMESPACE { namespace hn = hwy::HWY_NAMESPACE; using FloatPtr = hwy::AlignedFreeUniquePtr; template using MatStoragePtr = std::unique_ptr>; // Generates inputs: deterministic, within max SfpStream range. template MatStoragePtr GenerateMat(const Extents2D& extents, hwy::ThreadPool& pool) { gcpp::CompressWorkingSet ws; auto mat = std::make_unique>("mat", extents.rows, extents.cols); FloatPtr content = hwy::AllocateAligned(mat->NumElements()); HWY_ASSERT(content); const float scale = SfpStream::kMax / (mat->NumElements()); pool.Run(0, extents.rows, [&](const size_t r, size_t /*thread*/) { for (size_t c = 0; c < extents.cols; c++) { float f = static_cast(r * extents.cols + c) * scale; if ((r + c) & 1) f = -f; // Also generate some negative values. content[r * extents.cols + c] = f; } }); CompressScaled(content.get(), mat->NumElements(), ws, *mat, pool); mat->set_scale(0.6f); // Arbitrary value, different from 1. return mat; } // extents describes the transposed matrix. template MatStoragePtr GenerateTransposedMat(const Extents2D extents, hwy::ThreadPool& pool) { gcpp::CompressWorkingSet ws; auto mat = std::make_unique>("trans", extents.rows, extents.cols); FloatPtr content = hwy::AllocateAligned(mat->NumElements()); const float scale = SfpStream::kMax / (mat->NumElements()); pool.Run(0, extents.rows, [&](const size_t r, size_t /*thread*/) { for (size_t c = 0; c < extents.cols; c++) { float f = static_cast(c * extents.rows + r) * scale; if ((r + c) & 1) f = -f; // Also generate some negative values. content[r * extents.cols + c] = f; } }); CompressScaled(content.get(), mat->NumElements(), ws, *mat, pool); // Arbitrary value, different from 1, must match GenerateMat. mat->set_scale(0.6f); return mat; } // Returns 1-norm, used for estimating tolerable numerical differences. double MaxRowAbsSum(const RowVectorBatch& a) { double max_row_abs_sum = 0.0; for (size_t r = 0; r < a.BatchSize(); r++) { const float* row = a.Batch(r); double row_abs_sum = 0.0; for (size_t c = 0; c < a.Cols(); c++) { row_abs_sum += hwy::ScalarAbs(row[c]); } max_row_abs_sum = HWY_MAX(max_row_abs_sum, row_abs_sum); } return max_row_abs_sum; } // Returns the maximum absolute value of `a`. float MaxAbs(const RowVectorBatch& a) { float max_abs = 0.0f; for (size_t c = 0; c < a.Cols(); c++) { for (size_t r = 0; r < a.BatchSize(); r++) { const float* row = a.Batch(r); max_abs = HWY_MAX(max_abs, hwy::ScalarAbs(row[c])); } } return max_abs; } // B is already transposed. template void AssertClose(const ConstMat& A, const ConstMat& B, const RowPtr& C_slow, const RowPtr& C, int line) { const hn::ScalableTag df; const size_t cols = A.extents.cols; const size_t B_rows = B.extents.rows; // Round up for DecompressAndZeroPad. RowVectorBatch a_batch = AllocateAlignedRows(A.extents); RowVectorBatch b_trans_batch = AllocateAlignedRows(B.extents); RowVectorBatch c_batch = AllocateAlignedRows(Extents2D(A.extents.rows, B_rows)); RowVectorBatch c_slow_batch = AllocateAlignedRows(Extents2D(A.extents.rows, B_rows)); HWY_ASSERT(A.ofs == 0 && B.ofs == 0); for (size_t m = 0; m < A.extents.rows; ++m) { DecompressAndZeroPad(df, MakeSpan(A.ptr + A.Row(m), cols), 0, a_batch.Batch(m), cols); DecompressAndZeroPad(df, MakeSpan(C.Row(m), B_rows), 0, c_batch.Batch(m), B_rows); DecompressAndZeroPad(df, MakeSpan(C_slow.Row(m), B_rows), 0, c_slow_batch.Batch(m), B_rows); } for (size_t n = 0; n < B_rows; ++n) { DecompressAndZeroPad(df, MakeSpan(B.ptr + B.Row(n), cols), 0, b_trans_batch.Batch(n), cols); } // MatMul rounds inputs to BF16, so error is proportional to the max input // magnitude, but also to f32 accumulation of rows in A and B. const double norm = MaxRowAbsSum(a_batch) * MaxRowAbsSum(b_trans_batch); const float max_abs = MaxAbs(a_batch) * MaxAbs(b_trans_batch); const double eps_bf16 = hwy::ConvertScalarTo(hwy::Epsilon()); const double eps_f32 = hwy::ConvertScalarTo(hwy::Epsilon()); double tolerance = 12 * norm * eps_f32; // Dot() also rounds F32,BF16 to BF16, but not with F32,F32, so increase the // tolerance there. if (IsF32() && IsF32()) { tolerance += 4 * max_abs * eps_bf16; } if (tolerance > 500.0) { HWY_WARN("high tolerance %f norm %f maxabs %f\n", tolerance, norm, max_abs); } const double max_rel = 1.0 + hwy::ConvertScalarTo(hwy::Epsilon()); for (size_t r = 0; r < A.extents.rows; r++) { const float* expected_row = c_slow_batch.Batch(r); const float* actual_row = c_batch.Batch(r); for (size_t c = 0; c < B.extents.rows; c++) { const double expected_value = static_cast(expected_row[c]); const double actual_value = static_cast(actual_row[c]); const bool in_range = expected_value - tolerance <= actual_value && actual_value <= expected_value + tolerance; if (!in_range) { const double max = HWY_MAX(expected_value, actual_value); const double min = HWY_MIN(expected_value, actual_value); const double rel = max / HWY_MAX(min, 1E-6); if (rel > max_rel) { hwy::Abort(__FILE__, line, "(%zu,%zu): expected %f, actual %f, norm %f maxabs %f " "tolerance %f rel %E max_rel %E\n", r, c, expected_value, actual_value, norm, max_abs, tolerance, rel, max_rel); } } } } } // B is already transposed. template HWY_INLINE void MatMulSlow(const ConstMat A, const ConstMat B, const float* HWY_RESTRICT add_row, MatMulEnv& env, const RowPtr& C) { // TA can be any Packed except NuqStream because it uses pointer // arithmetic, because it is the second argument to Dot, which does not // support a v_ofs. static_assert(sizeof(TA) >= sizeof(BF16), "A matrix must be BF16/f32"); const float scale = A.scale * B.scale; const hn::ScalableTag df; // lane type is ignored const PackedSpan b_span = MakeSpan(B.ptr, B.ofs + B.Stride() * B.Extents().rows); const IndexRange all_rows_c(0, A.Extents().rows); const IndexRange all_cols_c(0, C.Cols()); NestedPools& pools = env.parallel.Pools(); hwy::ThreadPool& all_packages = pools.AllPackages(); const IndexRangePartition get_row_c = StaticPartition(all_rows_c, all_packages.NumWorkers(), 1); ParallelizeOneRange( get_row_c, all_packages, [&](const IndexRange& rows_c, size_t package_idx) HWY_ATTR { hwy::ThreadPool& all_clusters = pools.AllClusters(package_idx); const size_t multiple = Allocator::QuantumBytes() / sizeof(TB); const IndexRangePartition get_col_c = StaticPartition(all_cols_c, all_clusters.NumWorkers(), multiple); ParallelizeOneRange( get_col_c, all_clusters, [&](const IndexRange& cols_c, size_t cluster_idx) HWY_ATTR { for (size_t r : rows_c) { TC* HWY_RESTRICT C_row = C.Row(r); for (size_t c : cols_c) { const float add = add_row ? add_row[c] : 0.0f; C_row[c] = hwy::ConvertScalarTo( add + scale * Dot(df, b_span, c * B.Stride(), A.ptr + A.Row(r), A.extents.cols)); } } }); }); } void PrintSpeed(const char* algo, const Extents2D& A_extents, const Extents2D& B_extents, double elapsed) { const size_t num_b = B_extents.Area(); // 2x because of FMA. fprintf(stderr, " %10s: %f seconds, %.1f GFLOPS.\n", algo, elapsed, 2 * 1E-9 * A_extents.rows * num_b / elapsed); } template void TestMatMul(size_t rows_ac, size_t cols_a_rows_b, size_t cols_bc, bool add, MatMulEnv& env, int line) { hwy::ThreadPool& pool = env.parallel.Pools().Pool(); fprintf(stderr, "TestMatMul %zu, K=%zu, %zu, add=%d, TA=%s, TB=%s, TC=%s\n", rows_ac, cols_a_rows_b, cols_bc, add, TypeName(), TypeName(), TypeName()); env.print_config = false; // Too verbose. env.print_best = true; const Extents2D A_extents(rows_ac, cols_a_rows_b); const Extents2D B_extents(cols_bc, cols_a_rows_b); // already transposed const Extents2D C_extents(rows_ac, cols_bc); MatStoragePtr a = GenerateMat(A_extents, pool); MatStoragePtr b_trans = GenerateTransposedMat(B_extents, pool); RowVectorBatch c_slow_batch = AllocateAlignedRows(C_extents); RowVectorBatch c_batch = AllocateAlignedRows(C_extents); HWY_ASSERT(a && b_trans); std::unique_ptr> add_storage; if (add) { add_storage = GenerateMat(Extents2D(1, cols_bc), pool); HWY_ASSERT(add_storage); add_storage->set_scale(1.0f); } const auto A = ConstMatFromWeights(*a); const auto B = ConstMatFromWeights(*b_trans); const float* add_row = add ? add_storage->data_scale1() : nullptr; const RowPtr C_slow = RowPtrFromBatch(c_slow_batch); const RowPtr C = RowPtrFromBatch(c_batch); MatMulSlow(A, B, add_row, env, C_slow); // A few reps to get coverage of the various autotuned code paths. for (size_t rep = 0; rep < 16; ++rep) { MMPerKey* per_key = MatMul(A, B, add_row, env, C); AssertClose(A, B, C_slow, C, line); if (per_key->autotune.Best()) break; } } using F32 = float; using SFP = SfpStream; // Sweep all dimensions for a single input type and Highway target, to verify // the remainder handling. void TestTiny() { if (first_target == 0) first_target = HWY_TARGET; if (HWY_TARGET != first_target) return; for (size_t max_packages : {1, 2}) { const size_t max_threads = 0; // no limit NestedPools pools(max_threads, Tristate::kDefault, BoundedSlice(0, max_packages)); #if GEMMA_DISABLE_TOPOLOGY if (max_packages == 2) break; // we only have one package #else // If less than the limit, we have already tested all num_packages. if (pools.Topology().FullTopology().packages.size() < max_packages) break; #endif fprintf(stderr, "TestTiny %zu: %s %s\n", max_packages, pools.TopologyString(), pools.PinString()); Tristate use_spinning = Tristate::kDefault; pools.MaybeStartSpinning(use_spinning); Allocator::Init(pools.Topology(), /*enable_bind=*/true); MatMulEnv env(pools); for (size_t M = 1; M <= 12; ++M) { for (size_t K = 1; K <= 64; K *= 2) { for (size_t N = 4; N <= 64; N += max_packages * 4) { TestMatMul(M, K, N, /*add=*/false, env, __LINE__); } } } pools.MaybeStopSpinning(use_spinning); } } void TestAllMatMul() { // Skip EMU128 (10x slower than SSE4 for SFP) and older x86. if (HWY_TARGET == HWY_EMU128 || HWY_TARGET == HWY_SSE4 || HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE2) { return; } NestedPools pools(0); // no limits Tristate use_spinning = Tristate::kDefault; pools.MaybeStartSpinning(use_spinning); Allocator::Init(pools.Topology(), /*enable_bind=*/true); MatMulEnv env(pools); // Sizes seen in gemma_test 2B. Too slow for CI, enable on-demand. TestMatMul(1, 2048, 512, /*add=*/false, env, __LINE__); // TestMatMul(1, 2048, 2048, /*add=*/false, env, __LINE__); // TestMatMul(1, 2048, 16384, /*add=*/false, env, __LINE__); // TestMatMul(1, 16384, 2048, /*add=*/false, env, __LINE__); // TestMatMul(1, 2048, 256000, /*add=*/false, env, __LINE__); // TestMatMul(5, 2048, 512, /*add=*/false, env, __LINE__); // TestMatMul(5, 2048, 2048, /*add=*/false, env, __LINE__); // TestMatMul(5, 2048, 16384, /*add=*/false, env, __LINE__); // TestMatMul(5, 16384, 2048, /*add=*/false, env, __LINE__); // medium-sized square, f32 vs bf16 for A, B, C; plus add. TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/false, env, __LINE__); TestMatMul(256, 256, 256, /*add=*/true, env, __LINE__); // minimal non-square test. kColsARowsB must be at least 2 vectors. TestMatMul(35, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(34, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(33, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(33, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(31, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(29, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(4, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(4, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(4, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(4, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(4, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(4, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(3, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(3, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(3, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(3, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(3, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(3, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(2, 128, 64, /*add=*/true, env, __LINE__); TestMatMul(2, 128, 64, /*add=*/false, env, __LINE__); TestMatMul(2, 128, 64, /*add=*/true, env, __LINE__); TestMatMul(2, 128, 64, /*add=*/false, env, __LINE__); TestMatMul(2, 128, 64, /*add=*/true, env, __LINE__); TestMatMul(2, 128, 64, /*add=*/false, env, __LINE__); TestMatMul(1, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(1, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(1, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(1, 128, 32, /*add=*/true, env, __LINE__); TestMatMul(1, 128, 32, /*add=*/false, env, __LINE__); TestMatMul(1, 128, 32, /*add=*/true, env, __LINE__); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace gcpp { int64_t first_target = 0; // none run yet HWY_BEFORE_TEST(MatMulTest); HWY_EXPORT_AND_TEST_P(MatMulTest, TestTiny); HWY_EXPORT_AND_TEST_P(MatMulTest, TestAllMatMul); HWY_AFTER_TEST(); } // namespace gcpp #endif