// Copyright 2023 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef THIRD_PARTY_GEMMA_CPP_UTIL_TEST_UTIL_H_ #define THIRD_PARTY_GEMMA_CPP_UTIL_TEST_UTIL_H_ #include #include #include // std::sort #include #include #include "util/basics.h" // RngStream #include "util/mat.h" #include "hwy/base.h" // IWYU pragma: begin_exports #include "hwy/nanobenchmark.h" #include "hwy/stats.h" #include "hwy/tests/test_util.h" // RandomState // IWYU pragma: end_exports namespace gcpp { // Excludes outliers; we might not have enough samples for a reliable mode. HWY_INLINE double TrimmedMean(double* seconds, size_t num) { std::sort(seconds, seconds + num); double sum = 0; int count = 0; for (size_t i = num / 4; i < num / 2; ++i) { sum += seconds[i]; count += 1; } HWY_DASSERT(num != 0); return sum / count; } // Returns normalized value in [-1, 1). HWY_INLINE float RandomFloat(RngStream& rng) { const uint32_t exp = hwy::BitCastScalar(1.0f); const uint32_t mantissa_mask = hwy::MantissaMask(); const uint32_t representation = exp | (rng() & mantissa_mask); const float f12 = hwy::BitCastScalar(representation); HWY_DASSERT(1.0f <= f12 && f12 < 2.0f); // exponent is 2^0, only mantissa const float f = (2.0f * (f12 - 1.0f)) - 1.0f; HWY_DASSERT(-1.0f <= f && f < 1.0f); return f; } // Returns random Gaussian (mean=0, stddev=1/3 similar to expected weights) // using the central limit theorem. Avoid std::normal_distribution for // consistent cross-platform output. // TODO: use RngStream instead of RandomState. HWY_INLINE double RandomGaussian(hwy::RandomState& rng) { uint64_t sum = 0; constexpr int kReps = 40; for (int rep = 0; rep < kReps; ++rep) { sum += hwy::Random32(&rng) & 0xFFFFF; } const double sum_f = static_cast(sum) / static_cast(0xFFFFF * kReps); HWY_ASSERT(0.0 <= sum_f && sum_f <= 1.0); const double plus_minus_1 = 2.0 * sum_f - 1.0; HWY_ASSERT(-1.0 <= plus_minus_1 && plus_minus_1 <= 1.0); // Normalize by stddev of sum of uniform random scaled to [-1, 1]. return plus_minus_1 * std::sqrt(kReps / 3.0); }; // Returns true if val is inside [min, max]. template static inline bool IsInside(T expected_min, T expected_max, T val) { HWY_DASSERT(expected_min <= expected_max); return expected_min <= val && val <= expected_max; } template static inline bool IsNear(T expected, T val, T epsilon = T{1E-6}) { return IsInside(expected - epsilon, expected + epsilon, val); } HWY_INLINE void VerifyGaussian(hwy::Stats& stats) { // Inputs are roughly [-1, 1] and symmetric about zero. HWY_ASSERT(IsNear(-1.0f, stats.Min(), 0.10f)); HWY_ASSERT(IsNear(+1.0f, stats.Max(), 0.10f)); HWY_ASSERT(IsInside(-2E-3, 2E-3, stats.Mean())); HWY_ASSERT(IsInside(-0.15, 0.15, stats.Skewness())); // Near-Gaussian. HWY_ASSERT(IsInside(0.30, 0.35, stats.StandardDeviation())); HWY_ASSERT(IsNear(3.0, stats.Kurtosis(), 0.3)); } template void FillMatPtrT(MatPtrT& mat) { for (int i = 0; i < mat.Rows(); ++i) { for (int j = 0; j < mat.Cols(); ++j) { mat.Row(i)[j] = hwy::Unpredictable1() * 0.01f * (i + j + 1); } } } template void PrintMatPtr(MatPtrT mat) { for (int i = 0; i < mat.Rows(); ++i) { for (int j = 0; j < mat.Cols(); ++j) { std::cerr << mat.Row(i)[j] << " ,"; } std::cerr << std::endl; } }; } // namespace gcpp #endif // THIRD_PARTY_GEMMA_CPP_UTIL_TEST_UTIL_H_