Commit Graph

11 Commits

Author SHA1 Message Date
Jan Wassenberg 301dc8067a Major MatMul update, 1.9-2.3x speedup on Zen4 via bf16 mul
Supports converting all weight/activation formats to native MulT (bf16/f32)

Also:
- ConstMat/MutableMat for const correctness
- Move RowVectorBatch to allocator.h so it can be used from Matmul
- Add matmul.h so MatMulEnv can be used from Activations
- Remove kMaxThreads, detect from PerClusterPools
- Build fix: -inl.h files must be textual_hdrs, and highway.h should precede -inl.h

```
zen4 new
64, 24576, 3072, add=0, MatTA=bf16, MatTB=sfp:   616.6 GFLOPS.
64, 3072, 24576, add=0, MatTA=bf16, MatTB=sfp:   460.7 GFLOPS.
64, 24576, 3072, add=0, MatTA=f32, MatTB=sfp:    598.6 GFLOPS.
64, 3072, 24576, add=0, MatTA=f32, MatTB=sfp:    435.6 GFLOPS.

zen4 old
64, 24576, 3072, add=0, MatTA=f32, MatTB=sfp:    257.5 GFLOPS.
64, 3072, 24576, add=0, MatTA=f32, MatTB=sfp:    231.9 GFLOPS.
```

PiperOrigin-RevId: 663729812
2024-08-16 07:52:20 -07:00
Jan Wassenberg b831fa8482 1.3x prefill, 0.95x decode: matmul replacing last matvec
Before 38.28, 9.17 (with profiler enabled, prompt = 330 tok)
```
Gen.FFW                                 :      15414 x         4692352 = 24.166318
Gen.Attention.SumHeads                  :      15414 x         1394804 =  7.183451 !!
Gen.Embedding                           :        361 x        49961894 =  6.026297
Gen.Attention.QKV                       :      15414 x         1005125 =  5.176546
Gen.Attention.DotSoftmax                :      15414 x          885480 =  4.560357
RopeAndMulBy                            :     696528 x           11867 =  2.761818
```

After 49.80, 8.68
```
Gen.FFW                                 :      14448 x         5312783 = 25.646868
Gen.Embedding                           :        338 x        63044815 =  7.119845
Gen.Attention.QKV                       :      14448 x         1115003 =  5.382557
Gen.Attention.DotSoftmax                :      14448 x          897577 =  4.332957
RopeAndMulBy                            :     673344 x           11886 =  2.674156
Gen.Attention.SumHeads                  :      14448 x          518291 =  2.501993 !!
```
PiperOrigin-RevId: 662024085
2024-08-12 03:36:01 -07:00
Jan Wassenberg 2ebbe4076f 1.03-1.08x decode speedup: precompute Rope theta, fuse
Split attention into functions, move into class.
Fuse Rope and MulBy, allow non-in-place version to avoid copy from q to KV.
Sink if() into MaybeLogitsSoftCap.

PiperOrigin-RevId: 661168418
2024-08-09 01:23:24 -07:00
Jan Wassenberg 992a2cbbc0 De-templatize Activations, add RowVectorBatch class
Also remove most kBatchSize args.

PiperOrigin-RevId: 653185525
2024-07-17 04:38:15 -07:00
Daniel Keysers ff34370aac Simplify FFW by using MatMul_4x4_Batch_Add.
Affects only the griffin model, where prefill TPS improves by about 70%.

PiperOrigin-RevId: 652878176
2024-07-16 09:41:23 -07:00
Jan Wassenberg c7c3daa624 7x compile time speedup: shard gemma.cc
Use overloaded functions defined in gemma/instantiations.
Also split out activations.h.

PiperOrigin-RevId: 649053122
2024-07-03 06:35:04 -07:00
Jan Wassenberg 09a7e75ead Prep for sharding gemma.cc: split into kv_cache, tokenizer.
Move activations.h to backprop/ to make space for another activations.h.

PiperOrigin-RevId: 648744500
2024-07-02 09:31:06 -07:00
Zoltan Szabadka c004799cdc Add Adam optimizer.
Drive-by: Fix compilation errors and tests for backprop functions.
2024-06-06 18:41:36 +00:00
Jan Wassenberg 57c2cd8b52 Simplifications: remove GemmaInterface and GemmaImpl
Split common and weights into separate lib
Remove common-inl (does not have to be SIMD code), activations.cc
Centralize switch(Model) to avoid duplication
Move CompressWeightsT to compress_weights.cc
Move LoadWeights to weights.cc

PiperOrigin-RevId: 640869202
2024-06-06 05:54:21 -07:00
Zoltan Szabadka 8567978541 Adress review comments 2024-06-04 08:37:54 +00:00
Zoltan Szabadka 36e4d8bbfe Add first version of backpropagation support.
This is still in progress / experimental, currently it is only
implemented for normal gemma MQA attention layers, and no
parallelism is added yet for backward pass.

Since we need to remember all activations from all layers, the
forward pass was also reimplemented with a new activation data
structure.
2024-06-04 08:37:49 +00:00