Simplify FFW by using MatMul_4x4_Batch_Add.

Affects only the griffin model, where prefill TPS improves by about 70%.

PiperOrigin-RevId: 652878176
This commit is contained in:
Daniel Keysers 2024-07-16 09:40:38 -07:00 committed by Copybara-Service
parent 48b900b1b9
commit ff34370aac
3 changed files with 37 additions and 52 deletions

View File

@ -76,6 +76,8 @@ class CompressedArray {
public:
using value_type = MatT;
// Note that whenever you access data(), you have to consider a scale() that
// may be different from 1.0f.
MatT* data() { return data_.data(); }
const MatT* data() const { return data_.data(); }

View File

@ -59,6 +59,7 @@ struct Activations {
// For bf16/f32 vectors * bf16 matrix: faster to unpack once beforehand, into
// per-thread storage.
// TODO: only used for MatVec, remove once that is gone.
std::array<float, kModelDim * kMaxThreads> even_odd;
// Griffin layer internal activations

View File

@ -68,11 +68,11 @@ HWY_NOINLINE void GriffinRecurrent(
PROFILER_ZONE("Gen.Griffin");
static_assert(kQueryBatchSize == 1,
"Griffin does not support batched queries.");
HWY_DASSERT(num_queries == 1); // TODO: add batch query support for Griffin.
HWY_ASSERT(num_queries == 1); // TODO: add batch query support for Griffin.
KVCache& kv_cache = *kv_caches[0];
namespace hn = hwy::HWY_NAMESPACE;
using D = hn::ScalableTag<float>;
HWY_DASSERT(num_tokens <= kBatchSize);
HWY_ASSERT(num_tokens <= kBatchSize);
static constexpr size_t kModelDim =
gcpp::Activations<TConfig, kBatchSize * kQueryBatchSize>::kModelDim;
static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
@ -397,64 +397,46 @@ HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
size_t num_tokens,
const CompressedLayer<TConfig>* layer_weights,
hwy::ThreadPool& pool) {
PROFILER_ZONE("Gen.FFW");
HWY_DASSERT(num_tokens <= kBatchSize);
constexpr size_t kModelDim = TConfig::kModelDim;
constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
float* HWY_RESTRICT even_odd = activations.even_odd.data();
// TODO: MatMul does not yet support adding another matrix to the result.
if constexpr (!TConfig::kFFBiases) {
PROFILER_ZONE("Gen.FFW.GatedGELU");
// MatMul expects col-major B, which is what we have: kModelDim consecutive
// elements in memory, repeated kFFHiddenDim times.
const auto b1 = layer_weights->gating_einsum_w.data();
constexpr size_t kColsA = kModelDim;
constexpr size_t kColsB = kFFHiddenDim;
const auto b2 = b1 + kColsA * kColsB;
auto A = activations.bf_pre_ffw_rms_out.data();
// Will go through GELU.
MatMul_4x4_Batch<kColsA, kColsB>(num_tokens, A, b1, activations.C1.data(),
pool);
// What to multiply by.
MatMul_4x4_Batch<kColsA, kColsB>(num_tokens, A, b2, activations.C2.data(),
pool);
const auto A = activations.bf_pre_ffw_rms_out.data();
const auto B1 = layer_weights->gating_einsum_w.data();
const auto B2 = B1 + kColsA * kColsB;
auto C1 = activations.C1.data();
auto C2 = activations.C2.data();
constexpr bool kAddBias = TConfig::kFFBiases;
const auto bias = layer_weights->ffw_gating_biases.data();
// Activation (Gelu) and multiply by gate.
// Will go through GELU.
MatMul_4x4_Batch_Add<kColsA, kColsB, kAddBias>(num_tokens, A, B1, C1,
bias, pool);
// What to multiply by.
MatMul_4x4_Batch_Add<kColsA, kColsB, kAddBias>(num_tokens, A, B2, C2,
bias + kFFHiddenDim, pool);
// Activation (Gelu) and multiply by gate. Store activations in C1.
Activation<TConfig>(activations.C1.data(), activations.C2.data(),
kFFHiddenDim * num_tokens);
MatMul_4x4_Batch<kFFHiddenDim, kModelDim>(num_tokens, activations.C1.data(),
layer_weights->linear_w.data(),
activations.ffw_out.data(), pool);
} else { // TConfig::kFFBiases == true
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
const size_t hidden_offset = batch_idx * kFFHiddenDim * 2;
const hwy::bfloat16_t* HWY_RESTRICT vec =
activations.bf_pre_ffw_rms_out.data() + batch_idx * kModelDim;
float* HWY_RESTRICT out = activations.ffw_hidden.data() + hidden_offset;
float* HWY_RESTRICT out_mul = out + kFFHiddenDim;
PROFILER_ZONE("Gen.FFW.GatedGELU");
// Same matrix, first and second half of rows. Could fuse into one MatVec.
MatVecT</*kAdd=*/true, kFFHiddenDim, kModelDim>(
layer_weights->gating_einsum_w, kFFHiddenDim * kModelDim, vec,
layer_weights->ffw_gating_biases.data() + kFFHiddenDim, even_odd,
out_mul, pool);
// Gate, will go through the nonlinearity.
MatVecT</*kAdd=*/true, kFFHiddenDim, kModelDim>(
layer_weights->gating_einsum_w, 0, vec,
layer_weights->ffw_gating_biases.data(), even_odd, out, pool);
Activation<TConfig>(out, out_mul, kFFHiddenDim);
MatVecT</*kAdd=*/true, kModelDim, kFFHiddenDim>(
layer_weights->linear_w, 0,
activations.ffw_hidden.data() + hidden_offset,
layer_weights->ffw_output_biases.data(), even_odd,
activations.ffw_out.data() + batch_idx * kModelDim, pool);
}
// linear_w may have a scale value different from 1, apply that here.
// We multiply all activations by the scale value to compensate for the
// missing scale value in the weights.
if (layer_weights->linear_w.scale() != 1.0f) {
MulByConst(layer_weights->linear_w.scale(), C1, kFFHiddenDim * num_tokens);
}
// Hidden layer -> output layer.
MatMul_4x4_Batch_Add<kFFHiddenDim, kModelDim, kAddBias>(
num_tokens, C1, layer_weights->linear_w.data(),
activations.ffw_out.data(), layer_weights->ffw_output_biases.data(),
pool);
}
template <class TConfig, size_t kBatchSize>