Cleanup: move util/compress and convert_weights to compression/

Also remove unused models/, lint convert_weights

PiperOrigin-RevId: 649613088
This commit is contained in:
Jan Wassenberg 2024-07-05 04:16:14 -07:00 committed by Copybara-Service
parent 41efec4dba
commit f823371691
9 changed files with 235 additions and 224 deletions

View File

@ -259,24 +259,6 @@ cc_binary(
], ],
) )
cc_binary(
name = "compress_weights",
srcs = ["util/compress_weights.cc"],
deps = [
":args",
":common",
":gemma_lib",
":weights",
":weights_raw",
# Placeholder for internal dep, do not remove.,
"//compression:compress",
"@hwy//:hwy",
"@hwy//:nanobenchmark",
"@hwy//:profiler",
"@hwy//:thread_pool",
],
)
cc_binary( cc_binary(
name = "single_benchmark", name = "single_benchmark",
srcs = ["evals/benchmark.cc"], srcs = ["evals/benchmark.cc"],

View File

@ -169,5 +169,5 @@ endif() # GEMMA_ENABLE_TESTS
## Tools ## Tools
add_executable(compress_weights util/compress_weights.cc) add_executable(compress_weights compression/compress_weights.cc)
target_link_libraries(compress_weights libgemma hwy hwy_contrib) target_link_libraries(compress_weights libgemma hwy hwy_contrib)

View File

@ -94,11 +94,11 @@ If starting with Keras, first run this script to convert to Pytorch:
https://github.com/keras-team/keras-nlp/blob/master/tools/gemma/export_gemma_to_torch_xla.py https://github.com/keras-team/keras-nlp/blob/master/tools/gemma/export_gemma_to_torch_xla.py
From Pytorch, use the following script to generate uncompressed weights: From Pytorch, use the following script to generate uncompressed weights:
https://github.com/google/gemma.cpp/blob/dev/util/convert_weights.py https://github.com/google/gemma.cpp/blob/dev/compression/convert_weights.py
Then run gemma/compress_weights.cc (Bazel target :compress_weights), specifying Then run `compression/compress_weights.cc` (Bazel target
the resulting file as `--weights` and the desired .sbs name as the `compression:compress_weights`), specifying the resulting file as `--weights`
`--compressed_weights`. and the desired .sbs name as the `--compressed_weights`.
## Compile-Time Flags (Advanced) ## Compile-Time Flags (Advanced)
@ -192,7 +192,7 @@ transforms we apply to Gemma via Copybara.
## Debugging ## Debugging
At the first sign of incorrect or unexpected results, we recommend running with At the first sign of incorrect or unexpected results, we recommend running with
ASan/MSan enabled. When using blaze/bazel, you can add `--config=asan` or ASan/MSan enabled. When using bazel, you can add `--config=asan` or
`--config=msan-track-origins` to the build command. In addition to their checks `--config=msan-track-origins` to the build command. In addition to their checks
for memory overruns or uninitialized memory, we also enable debug-only asserts for memory overruns or uninitialized memory, we also enable debug-only asserts
in Gemma.cpp for those build configurations. in Gemma.cpp for those build configurations.

View File

@ -180,3 +180,21 @@ cc_library(
"@hwy//hwy/contrib/sort:vqsort", "@hwy//hwy/contrib/sort:vqsort",
], ],
) )
cc_binary(
name = "compress_weights",
srcs = ["compress_weights.cc"],
deps = [
":compress",
# Placeholder for internal dep, do not remove.,
"//third_party/gemma_cpp:args",
"//third_party/gemma_cpp:common",
"//third_party/gemma_cpp:gemma_lib",
"//third_party/gemma_cpp:weights",
"//third_party/gemma_cpp:weights_raw",
"@hwy//:hwy",
"@hwy//:nanobenchmark",
"@hwy//:profiler",
"@hwy//:thread_pool",
],
)

View File

@ -19,7 +19,7 @@
// which we pass the filename via macro 'argument'. // which we pass the filename via macro 'argument'.
#undef HWY_TARGET_INCLUDE #undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE \ #define HWY_TARGET_INCLUDE \
"util/compress_weights.cc" // NOLINT "compression/compress_weights.cc" // NOLINT
#include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/foreach_target.h" // IWYU pragma: keep
// Must come after foreach_target.h to avoid redefinition errors. // Must come after foreach_target.h to avoid redefinition errors.
#include "compression/compress-inl.h" #include "compression/compress-inl.h"

View File

@ -0,0 +1,209 @@
# Copyright 2024 Google LLC
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Converts pytorch to f32 for use by compress_weights.cc."""
import argparse
import collections
import os
from gemma import config
from gemma import model as gemma_model
import numpy as np
import torch
# Requires torch 2.2 and gemma package from
# https://github.com/google/gemma_pytorch
def check_file_exists(value):
if not os.path.exists(str(value)):
raise argparse.ArgumentTypeError(
"The file %s does not appear to exist." % value
)
return value
def check_model_types(value):
if str(value).lower() not in ["2b", "7b"]:
raise argparse.ArgumentTypeError(
"Model type value %s is not in [2b, 7b]." % value
)
return value
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokenizer",
dest="tokenizer",
default="models/tokenizer.spm",
help="Location of tokenizer file (.model or .spm)",
type=check_file_exists,
)
parser.add_argument(
"--weights",
dest="weights",
default="models/gemma-2b-it.ckpt",
help="Location of input checkpoint file (.ckpt)",
type=check_file_exists,
)
parser.add_argument(
"--output_file",
dest="output_file",
default="2bit-f32.sbs",
help="Location to write converted weights",
type=str,
)
parser.add_argument(
"--model_type",
dest="model_type",
default="2b",
help="Model size / type (2b, 7b)",
type=check_model_types,
)
args = parser.parse_args()
TRANSFORMATIONS = {
"2b": collections.defaultdict(
lambda: lambda x: x,
{
"embedder.weight": lambda x: x,
"self_attn.qkv_proj.weight": lambda x: x.reshape((10, 256, 2048)),
"self_attn.o_proj.weight": lambda x: x.reshape(
(2048, 8, 256)
).transpose([1, 0, 2]),
"mlp.gate_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.up_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.down_proj.weight": lambda x: x,
},
),
"7b": collections.defaultdict(
lambda: lambda x: x,
{
"embedder.weight": lambda x: x,
"self_attn.qkv_proj.weight": lambda x: x.reshape(
(3, 16, 256, 3072)
).transpose([1, 0, 2, 3]),
"self_attn.o_proj.weight": lambda x: x.reshape(
(3072, 16, 256)
).transpose([1, 0, 2]),
"mlp.gate_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.up_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.down_proj.weight": lambda x: x,
},
),
}
VALIDATIONS = {
"2b": {
"embedder.weight": lambda x: x.shape == (256000, 2048),
"model.norm.weight": lambda x: x.shape == (2048,),
"self_attn.qkv_proj.weight": lambda x: x.shape == (10, 256, 2048),
"self_attn.o_proj.weight": lambda x: x.shape == (8, 2048, 256),
"mlp.gate_proj.weight": lambda x: x.shape == (1, 16384, 2048),
"mlp.up_proj.weight": lambda x: x.shape == (1, 16384, 2048),
"mlp.down_proj.weight": lambda x: x.shape == (2048, 16384),
"input_layernorm.weight": lambda x: x.shape == (2048,),
"post_attention_layernorm.weight": lambda x: x.shape == (2048,),
},
"7b": {
"embedder.weight": lambda x: x.shape == (256000, 3072),
"model.norm.weight": lambda x: x.shape == (3072,),
"self_attn.qkv_proj.weight": lambda x: x.shape == (16, 3, 256, 3072),
"self_attn.o_proj.weight": lambda x: x.shape == (16, 3072, 256),
"mlp.gate_proj.weight": lambda x: x.shape == (1, 24576, 3072),
"mlp.up_proj.weight": lambda x: x.shape == (1, 24576, 3072),
"mlp.down_proj.weight": lambda x: x.shape == (3072, 24576),
"input_layernorm.weight": lambda x: x.shape == (3072,),
"post_attention_layernorm.weight": lambda x: x.shape == (3072,),
},
}
def param_names(num_hidden_layers: int):
"""Return parameter names in the order they are expected for deserialization."""
# note *weight_scaler params are ignored in the forward computation unless
# quantization is being used.
#
# since we are working with the full precision weights as input, don't
# include these in the parameters being iterated over.
names = [
("embedder.weight",) * 2, # embedder_input_embedding
("model.norm.weight",) * 2, # final_norm_scale
]
layer_params = [
"self_attn.o_proj.weight", # attn_vec_einsum_w
"self_attn.qkv_proj.weight", # qkv_einsum_w
"mlp.gate_proj.weight", # gating_einsum_w
"mlp.up_proj.weight",
"mlp.down_proj.weight", # linear_w
"input_layernorm.weight", # pre_attention_norm_scale
"post_attention_layernorm.weight", # pre_ffw_norm_scale
]
for layer in range(num_hidden_layers):
for layer_param in layer_params:
names = names + [(f"model.layers.{layer}.{layer_param}", layer_param)]
return names
def convert_weights():
"""Main function; loads weights, runs transformations, writes f32."""
model_type = args.model_type
output_file = args.output_file
model_config = config.get_model_config(model_type)
model_config.dtype = "float32"
model_config.tokenizer = args.tokenizer
device = torch.device("cpu")
torch.set_default_dtype(torch.float)
model = gemma_model.GemmaForCausalLM(model_config)
model.load_weights(args.weights)
model.to(device).eval()
model_dict = dict(model.named_parameters())
param_order = param_names(model_config.num_hidden_layers)
all_ok = True
print("Checking transformations ...")
for name, layer_name in param_order:
arr = model_dict[name].detach().numpy()
arr = TRANSFORMATIONS[model_type][layer_name](arr)
check = "OK" if VALIDATIONS[model_type][layer_name](arr) else "FAILED"
if check == "FAILED":
all_ok = False
print(f" {name : <60}{str(arr.shape) : <20}{check}")
if all_ok:
print("Writing parameters ...")
with open(output_file, "wb") as bin_handle:
for name, layer_name in param_order:
arr = model_dict[name].detach().numpy()
arr = TRANSFORMATIONS[model_type][layer_name](arr)
check = "OK" if VALIDATIONS[model_type][layer_name](arr) else "FAILED"
print(f" {name : <60}{str(arr.shape) : <20}{check}")
arr.flatten().astype(np.float32).tofile(bin_handle)
if __name__ == "__main__":
convert_weights()
print("Done")

View File

@ -2,7 +2,7 @@
#undef HWY_TARGET_INCLUDE #undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE \ #define HWY_TARGET_INCLUDE \
"third_party/gemma_cpp/compression/python/compression_clif_aux.cc" // NOLINT "compression/python/compression_clif_aux.cc" // NOLINT
#include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/foreach_target.h" // IWYU pragma: keep
// Must come after foreach_target.h to avoid redefinition errors. // Must come after foreach_target.h to avoid redefinition errors.
#include "compression/compress-inl.h" #include "compression/compress-inl.h"

0
models/.gitignore vendored
View File

View File

@ -1,198 +0,0 @@
# Copyright 2024 Google LLC
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import torch
from gemma import config
from gemma import model as gemma_model
import numpy as np
import argparse
import os
# Requires torch 2.2 and gemma package from https://github.com/google/gemma_pytorch
def check_file_exists(value):
if not os.path.exists(str(value)):
raise argparse.ArgumentTypeError("The file %s does not appear to exist." % value)
return value
def check_model_types(value):
if str(value).lower() not in ["2b", "7b"]:
raise argparse.ArgumentTypeError("Model type value %s is not in [2b, 7b]." % value)
return value
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokenizer",
dest="tokenizer",
default="models/tokenizer.spm",
help="Location of tokenizer file (.model or .spm)",
type=check_file_exists,
)
parser.add_argument(
"--weights",
dest="weights",
default="models/gemma-2b-it.ckpt",
help="Location of input checkpoint file (.ckpt)",
type=check_file_exists,
)
parser.add_argument(
"--output_file",
dest="output_file",
default="2bit-f32.sbs",
help="Location to write converted weights",
type=str,
)
parser.add_argument(
"--model_type",
dest="model_type",
default="2b",
help="Model size / type (2b, 7b)",
type=check_model_types,
)
args = parser.parse_args()
TRANSFORMATIONS = {
"2b":defaultdict(
lambda: lambda x: x,
{
"embedder.weight": lambda x: x,
"self_attn.qkv_proj.weight": lambda x: x.reshape((10, 256, 2048)),
"self_attn.o_proj.weight": lambda x: x.reshape((2048, 8, 256)).transpose([1,0,2]),
"mlp.gate_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.up_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.down_proj.weight": lambda x: x,
}
),
"7b":defaultdict(
lambda: lambda x: x,
{
"embedder.weight": lambda x: x,
"self_attn.qkv_proj.weight": lambda x: x.reshape((3, 16, 256, 3072)).transpose([1,0,2,3]),
"self_attn.o_proj.weight": lambda x: x.reshape((3072, 16, 256)).transpose([1,0,2]),
"mlp.gate_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.up_proj.weight": lambda x: x[np.newaxis, :, :],
"mlp.down_proj.weight": lambda x: x,
}
),
}
VALIDATIONS = {
"2b": {
"embedder.weight": lambda x: x.shape == (256000, 2048),
"model.norm.weight": lambda x: x.shape == (2048,),
"self_attn.qkv_proj.weight": lambda x: x.shape == (10, 256, 2048),
"self_attn.o_proj.weight": lambda x: x.shape == (8, 2048, 256),
"mlp.gate_proj.weight": lambda x: x.shape == (1, 16384, 2048),
"mlp.up_proj.weight": lambda x: x.shape == (1, 16384, 2048),
"mlp.down_proj.weight": lambda x: x.shape == (2048, 16384),
"input_layernorm.weight": lambda x: x.shape == (2048,),
"post_attention_layernorm.weight": lambda x: x.shape == (2048,),
},
"7b": {
"embedder.weight": lambda x: x.shape == (256000, 3072),
"model.norm.weight": lambda x: x.shape == (3072,),
"self_attn.qkv_proj.weight": lambda x: x.shape == (16, 3, 256, 3072),
"self_attn.o_proj.weight": lambda x: x.shape == (16, 3072, 256),
"mlp.gate_proj.weight": lambda x: x.shape == (1, 24576, 3072),
"mlp.up_proj.weight": lambda x: x.shape == (1, 24576, 3072),
"mlp.down_proj.weight": lambda x: x.shape == (3072, 24576),
"input_layernorm.weight": lambda x: x.shape == (3072,),
"post_attention_layernorm.weight": lambda x: x.shape == (3072,),
},
}
def param_names(num_hidden_layers: int):
"""Return parameter names in the order they are expected for deserialization."""
# note *weight_scaler params are ignored in the forward computation unless
# quantization is being used.
#
# since we are working with the full precision weights as input, don't
# include these in the parameters being iterated over.
# fmt: off
names = [
("embedder.weight", ) * 2, # embedder_input_embedding
("model.norm.weight", ) * 2 # final_norm_scale
]
layer_params = [
"self_attn.o_proj.weight", # attn_vec_einsum_w
"self_attn.qkv_proj.weight", # qkv_einsum_w
"mlp.gate_proj.weight", # gating_einsum_w
"mlp.up_proj.weight",
"mlp.down_proj.weight", # linear_w
"input_layernorm.weight", # pre_attention_norm_scale
"post_attention_layernorm.weight", # pre_ffw_norm_scale
]
# fmt: on
for layer in range(num_hidden_layers):
for layer_param in layer_params:
names = names + [(f"model.layers.{layer}.{layer_param}", layer_param)]
return names
def convert_weights():
model_type = args.model_type
output_file = args.output_file
model_config = config.get_model_config(model_type)
model_config.dtype = "float32"
model_config.tokenizer = args.tokenizer
device = torch.device("cpu")
torch.set_default_dtype(torch.float)
model = gemma_model.GemmaForCausalLM(model_config)
model.load_weights(args.weights)
model.to(device).eval()
model_dict = dict(model.named_parameters())
param_order = param_names(model_config.num_hidden_layers)
all_ok = True
print("Checking transformations ...")
for name, layer_name in param_order:
arr = model_dict[name].detach().numpy()
arr = TRANSFORMATIONS[model_type][layer_name](arr)
check = "OK" if VALIDATIONS[model_type][layer_name](arr) else "FAILED"
if check == "FAILED":
all_ok = False
print(f" {name : <60}{str(arr.shape) : <20}{check}")
if all_ok:
print("Writing parameters ...")
gate = None
with open(output_file, "wb") as bin_handle:
for name, layer_name in param_order:
arr = model_dict[name].detach().numpy()
arr = TRANSFORMATIONS[model_type][layer_name](arr)
check = "OK" if VALIDATIONS[model_type][layer_name](arr) else "FAILED"
print(f" {name : <60}{str(arr.shape) : <20}{check}")
arr.flatten().astype(np.float32).tofile(bin_handle)
if __name__ == "__main__":
convert_weights()
print("Done")