Use lambda to split function and Make stream_token can break prefill, too

This commit is contained in:
Charles Chan 2024-04-23 22:42:01 +08:00
parent e8d29792ac
commit ea45d7c4d7
1 changed files with 84 additions and 68 deletions

View File

@ -1057,80 +1057,96 @@ void GenerateImpl(GemmaImpl<TConfig>& gemma, size_t max_tokens,
// In single-turn (non-chat) usage, pos and pos_offset start at 0 and are
// always equal.
size_t pos_offset = 0; // offset relative to pos
const double prefill_start = hwy::platform::Now();
// Prefill stops before prompt_size - 1 since the last prompt token is the
// first input token for generation.
while (pos_offset < prompt_size - 1) {
const size_t batch_size =
std::min(kPrefillBatchSize, prompt_size - 1 - pos_offset);
HWY_DASSERT(batch_size <= kPrefillBatchSize);
HWY_DASSERT(pos_offset + batch_size <= prompt_size - 1);
const int* batch_tokens = prompt.data() + pos_offset;
Prefill<kPrefillBatchSize>(batch_tokens, batch_size, pos, weights,
prefill_activations, kv_cache, pool, inner_pool);
for (size_t idx = 0; idx < batch_size; ++idx) {
stream_token(batch_tokens[idx], 0.0f);
}
pos += batch_size;
pos_offset += batch_size;
}
auto prefill_phase = [&]() HWY_ATTR {
bool keep_on = true;
const double prefill_start = hwy::platform::Now();
if (verbosity >= 2) {
// in the future this output should not occur in GenerateImpl but instead
// should be available as observable state for frontend code to handle I/O.
const double prefill_end = hwy::platform::Now();
const double prefill_tok_sec =
static_cast<double>(pos_offset) / (prefill_end - prefill_start);
std::cout << "\n[ Prefill tokens / sec = " << prefill_tok_sec << " ]";
}
const double gen_start = hwy::platform::Now();
HWY_DASSERT(pos_offset == prompt_size - 1);
size_t pos_gen_start = pos_offset;
int token = prompt.at(pos_offset);
stream_token(token, 0);
for (size_t generate_pos = 0;
pos < max_tokens && generate_pos < max_generated_tokens;
++pos, ++pos_offset, ++generate_pos) {
const bool is_generating_phase = pos_offset >= prompt_size - 1;
Transformer(token, pos, weights, activations, kv_cache, pool, inner_pool,
layers_output);
float* final_activation = activations.x.data();
// The condition below is always true if we are doing Prefill above.
// We keep it here for clarity so that the code is correct even if Prefill
// is disabled.
if (is_generating_phase) {
PROFILER_ZONE("Gen.Embedding");
// Generation phase
MatVec<kVocabSize, TConfig::kModelDim>(weights.embedder_input_embedding,
0, final_activation,
activations.logits.data(), pool);
// Barrier: must have all logits so we can subtract max.
Softmax(activations.logits.data(), kVocabSize);
token = SampleTopK<TConfig::kTopK>(activations.logits.data(), kVocabSize,
gen, temperature, accept_token);
if (!stream_token(token, activations.logits[token])) {
token = EOS_ID;
// Prefill stops before prompt_size - 1 since the last prompt token is the
// first input token for generation.
while (pos_offset < prompt_size - 1 && keep_on) {
const size_t batch_size =
std::min(kPrefillBatchSize, prompt_size - 1 - pos_offset);
HWY_DASSERT(batch_size <= kPrefillBatchSize);
HWY_DASSERT(pos_offset + batch_size <= prompt_size - 1);
const int* batch_tokens = prompt.data() + pos_offset;
Prefill<kPrefillBatchSize>(batch_tokens, batch_size, pos, weights,
prefill_activations, kv_cache, pool, inner_pool);
for (size_t idx = 0; idx < batch_size; ++idx) {
keep_on = stream_token(batch_tokens[idx], 0.0f);
if(!keep_on) {
break;
}
}
} else {
// We would take this branch if we were not doing Prefill but would
// process the tokens of the prompt one at a time.
token = prompt.at(pos_offset + 1);
stream_token(token, 0);
pos += batch_size;
pos_offset += batch_size;
}
if (token == EOS_ID) {
if (verbosity >= 2) {
const double gen_end = hwy::platform::Now();
const double gen_tok_sec =
static_cast<double>(pos_offset - pos_gen_start) /
(gen_end - gen_start);
std::cout << "\n[ Generation tokens / sec = " << gen_tok_sec << " ]\n";
if (verbosity >= 2) {
// in the future this output should not occur in GenerateImpl but instead
// should be available as observable state for frontend code to handle I/O.
const double prefill_end = hwy::platform::Now();
const double prefill_tok_sec =
static_cast<double>(pos_offset) / (prefill_end - prefill_start);
std::cout << "\n[ Prefill tokens / sec = " << prefill_tok_sec << " ]";
}
return keep_on;
};
auto transform_phase = [&]() HWY_ATTR {
const double gen_start = hwy::platform::Now();
HWY_DASSERT(pos_offset == prompt_size - 1);
size_t pos_gen_start = pos_offset;
int token = prompt.at(pos_offset);
stream_token(token, 0);
for (size_t generate_pos = 0;
pos < max_tokens && generate_pos < max_generated_tokens;
++pos, ++pos_offset, ++generate_pos) {
const bool is_generating_phase = pos_offset >= prompt_size - 1;
Transformer(token, pos, weights, activations, kv_cache, pool, inner_pool,
layers_output);
float* final_activation = activations.x.data();
// The condition below is always true if we are doing Prefill above.
// We keep it here for clarity so that the code is correct even if Prefill
// is disabled.
if (is_generating_phase) {
PROFILER_ZONE("Gen.Embedding");
// Generation phase
MatVec<kVocabSize, TConfig::kModelDim>(weights.embedder_input_embedding,
0, final_activation,
activations.logits.data(), pool);
// Barrier: must have all logits so we can subtract max.
Softmax(activations.logits.data(), kVocabSize);
token = SampleTopK<TConfig::kTopK>(activations.logits.data(), kVocabSize,
gen, temperature, accept_token);
if (!stream_token(token, activations.logits[token])) {
token = EOS_ID;
}
} else {
// We would take this branch if we were not doing Prefill but would
// process the tokens of the prompt one at a time.
token = prompt.at(pos_offset + 1);
stream_token(token, 0);
}
if (token == EOS_ID) {
if (verbosity >= 2) {
const double gen_end = hwy::platform::Now();
const double gen_tok_sec =
static_cast<double>(pos_offset - pos_gen_start) /
(gen_end - gen_start);
std::cout << "\n[ Generation tokens / sec = " << gen_tok_sec << " ]\n";
}
break;
}
break;
}
};
if(prefill_phase()) {
transform_phase();
}
}