mirror of https://github.com/google/gemma.cpp.git
Use lambda to split function and Make stream_token can break prefill, too
This commit is contained in:
parent
e8d29792ac
commit
ea45d7c4d7
152
gemma/gemma.cc
152
gemma/gemma.cc
|
|
@ -1057,80 +1057,96 @@ void GenerateImpl(GemmaImpl<TConfig>& gemma, size_t max_tokens,
|
|||
// In single-turn (non-chat) usage, pos and pos_offset start at 0 and are
|
||||
// always equal.
|
||||
size_t pos_offset = 0; // offset relative to pos
|
||||
const double prefill_start = hwy::platform::Now();
|
||||
|
||||
// Prefill stops before prompt_size - 1 since the last prompt token is the
|
||||
// first input token for generation.
|
||||
while (pos_offset < prompt_size - 1) {
|
||||
const size_t batch_size =
|
||||
std::min(kPrefillBatchSize, prompt_size - 1 - pos_offset);
|
||||
HWY_DASSERT(batch_size <= kPrefillBatchSize);
|
||||
HWY_DASSERT(pos_offset + batch_size <= prompt_size - 1);
|
||||
const int* batch_tokens = prompt.data() + pos_offset;
|
||||
Prefill<kPrefillBatchSize>(batch_tokens, batch_size, pos, weights,
|
||||
prefill_activations, kv_cache, pool, inner_pool);
|
||||
for (size_t idx = 0; idx < batch_size; ++idx) {
|
||||
stream_token(batch_tokens[idx], 0.0f);
|
||||
}
|
||||
pos += batch_size;
|
||||
pos_offset += batch_size;
|
||||
}
|
||||
auto prefill_phase = [&]() HWY_ATTR {
|
||||
bool keep_on = true;
|
||||
const double prefill_start = hwy::platform::Now();
|
||||
|
||||
if (verbosity >= 2) {
|
||||
// in the future this output should not occur in GenerateImpl but instead
|
||||
// should be available as observable state for frontend code to handle I/O.
|
||||
const double prefill_end = hwy::platform::Now();
|
||||
const double prefill_tok_sec =
|
||||
static_cast<double>(pos_offset) / (prefill_end - prefill_start);
|
||||
std::cout << "\n[ Prefill tokens / sec = " << prefill_tok_sec << " ]";
|
||||
}
|
||||
|
||||
const double gen_start = hwy::platform::Now();
|
||||
|
||||
HWY_DASSERT(pos_offset == prompt_size - 1);
|
||||
|
||||
size_t pos_gen_start = pos_offset;
|
||||
int token = prompt.at(pos_offset);
|
||||
stream_token(token, 0);
|
||||
for (size_t generate_pos = 0;
|
||||
pos < max_tokens && generate_pos < max_generated_tokens;
|
||||
++pos, ++pos_offset, ++generate_pos) {
|
||||
const bool is_generating_phase = pos_offset >= prompt_size - 1;
|
||||
Transformer(token, pos, weights, activations, kv_cache, pool, inner_pool,
|
||||
layers_output);
|
||||
float* final_activation = activations.x.data();
|
||||
// The condition below is always true if we are doing Prefill above.
|
||||
// We keep it here for clarity so that the code is correct even if Prefill
|
||||
// is disabled.
|
||||
if (is_generating_phase) {
|
||||
PROFILER_ZONE("Gen.Embedding");
|
||||
// Generation phase
|
||||
MatVec<kVocabSize, TConfig::kModelDim>(weights.embedder_input_embedding,
|
||||
0, final_activation,
|
||||
activations.logits.data(), pool);
|
||||
// Barrier: must have all logits so we can subtract max.
|
||||
Softmax(activations.logits.data(), kVocabSize);
|
||||
token = SampleTopK<TConfig::kTopK>(activations.logits.data(), kVocabSize,
|
||||
gen, temperature, accept_token);
|
||||
if (!stream_token(token, activations.logits[token])) {
|
||||
token = EOS_ID;
|
||||
// Prefill stops before prompt_size - 1 since the last prompt token is the
|
||||
// first input token for generation.
|
||||
while (pos_offset < prompt_size - 1 && keep_on) {
|
||||
const size_t batch_size =
|
||||
std::min(kPrefillBatchSize, prompt_size - 1 - pos_offset);
|
||||
HWY_DASSERT(batch_size <= kPrefillBatchSize);
|
||||
HWY_DASSERT(pos_offset + batch_size <= prompt_size - 1);
|
||||
const int* batch_tokens = prompt.data() + pos_offset;
|
||||
Prefill<kPrefillBatchSize>(batch_tokens, batch_size, pos, weights,
|
||||
prefill_activations, kv_cache, pool, inner_pool);
|
||||
for (size_t idx = 0; idx < batch_size; ++idx) {
|
||||
keep_on = stream_token(batch_tokens[idx], 0.0f);
|
||||
if(!keep_on) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// We would take this branch if we were not doing Prefill but would
|
||||
// process the tokens of the prompt one at a time.
|
||||
token = prompt.at(pos_offset + 1);
|
||||
stream_token(token, 0);
|
||||
pos += batch_size;
|
||||
pos_offset += batch_size;
|
||||
}
|
||||
if (token == EOS_ID) {
|
||||
if (verbosity >= 2) {
|
||||
const double gen_end = hwy::platform::Now();
|
||||
const double gen_tok_sec =
|
||||
static_cast<double>(pos_offset - pos_gen_start) /
|
||||
(gen_end - gen_start);
|
||||
std::cout << "\n[ Generation tokens / sec = " << gen_tok_sec << " ]\n";
|
||||
|
||||
if (verbosity >= 2) {
|
||||
// in the future this output should not occur in GenerateImpl but instead
|
||||
// should be available as observable state for frontend code to handle I/O.
|
||||
const double prefill_end = hwy::platform::Now();
|
||||
const double prefill_tok_sec =
|
||||
static_cast<double>(pos_offset) / (prefill_end - prefill_start);
|
||||
std::cout << "\n[ Prefill tokens / sec = " << prefill_tok_sec << " ]";
|
||||
}
|
||||
|
||||
return keep_on;
|
||||
};
|
||||
|
||||
auto transform_phase = [&]() HWY_ATTR {
|
||||
|
||||
const double gen_start = hwy::platform::Now();
|
||||
|
||||
HWY_DASSERT(pos_offset == prompt_size - 1);
|
||||
|
||||
size_t pos_gen_start = pos_offset;
|
||||
int token = prompt.at(pos_offset);
|
||||
stream_token(token, 0);
|
||||
for (size_t generate_pos = 0;
|
||||
pos < max_tokens && generate_pos < max_generated_tokens;
|
||||
++pos, ++pos_offset, ++generate_pos) {
|
||||
const bool is_generating_phase = pos_offset >= prompt_size - 1;
|
||||
Transformer(token, pos, weights, activations, kv_cache, pool, inner_pool,
|
||||
layers_output);
|
||||
float* final_activation = activations.x.data();
|
||||
// The condition below is always true if we are doing Prefill above.
|
||||
// We keep it here for clarity so that the code is correct even if Prefill
|
||||
// is disabled.
|
||||
if (is_generating_phase) {
|
||||
PROFILER_ZONE("Gen.Embedding");
|
||||
// Generation phase
|
||||
MatVec<kVocabSize, TConfig::kModelDim>(weights.embedder_input_embedding,
|
||||
0, final_activation,
|
||||
activations.logits.data(), pool);
|
||||
// Barrier: must have all logits so we can subtract max.
|
||||
Softmax(activations.logits.data(), kVocabSize);
|
||||
token = SampleTopK<TConfig::kTopK>(activations.logits.data(), kVocabSize,
|
||||
gen, temperature, accept_token);
|
||||
if (!stream_token(token, activations.logits[token])) {
|
||||
token = EOS_ID;
|
||||
}
|
||||
} else {
|
||||
// We would take this branch if we were not doing Prefill but would
|
||||
// process the tokens of the prompt one at a time.
|
||||
token = prompt.at(pos_offset + 1);
|
||||
stream_token(token, 0);
|
||||
}
|
||||
if (token == EOS_ID) {
|
||||
if (verbosity >= 2) {
|
||||
const double gen_end = hwy::platform::Now();
|
||||
const double gen_tok_sec =
|
||||
static_cast<double>(pos_offset - pos_gen_start) /
|
||||
(gen_end - gen_start);
|
||||
std::cout << "\n[ Generation tokens / sec = " << gen_tok_sec << " ]\n";
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
if(prefill_phase()) {
|
||||
transform_phase();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue