Added bias vector addition to MatMul

PiperOrigin-RevId: 643385381
This commit is contained in:
Ray Smith 2024-06-14 10:24:28 -07:00 committed by Copybara-Service
parent 2228055bb8
commit e0afdfa8fb
2 changed files with 231 additions and 137 deletions

View File

@ -141,12 +141,55 @@ HWY_INLINE void StoreHorizontalSums(DF df, VF c00, VF c01, VF c02, VF c03,
tile_c[stride_c * 3 + 3] = hn::ReduceSum(df, c33); tile_c[stride_c * 3 + 3] = hn::ReduceSum(df, c33);
} }
// Completes the tile by summing across the vectors, and adds the biases.
template <size_t kNumRows, class DF, class VF = hn::Vec<DF>, typename AddT>
HWY_INLINE void StoreHorizontalSumsAdd(DF df, VF c00, VF c01, VF c02, VF c03,
VF c10, VF c11, VF c12, VF c13, //
VF c20, VF c21, VF c22, VF c23, //
VF c30, VF c31, VF c32, VF c33,
const AddT* add,
float* HWY_RESTRICT tile_c,
size_t stride_c) {
// We are computing the product of (4, 4N) * (4N, 4) = (4, 4) tiles.
// Each entry of C[r,c] is a dot product of A.row and B.col, which reside in
// the lanes of `c$r$c`, so we store their horizontal sum (ReduceSum). This is
// expensive, but only a fraction of the kColsA_RowsB/N FMAs.
float addon0 = hwy::ConvertScalarTo<float>(add[0]);
tile_c[stride_c * 0 + 0] = hn::ReduceSum(df, c00) + addon0;
float addon1 = hwy::ConvertScalarTo<float>(add[1]);
tile_c[stride_c * 0 + 1] = hn::ReduceSum(df, c01) + addon1;
float addon2 = hwy::ConvertScalarTo<float>(add[2]);
tile_c[stride_c * 0 + 2] = hn::ReduceSum(df, c02) + addon2;
float addon3 = hwy::ConvertScalarTo<float>(add[3]);
tile_c[stride_c * 0 + 3] = hn::ReduceSum(df, c03) + addon3;
if (kNumRows == 1) return;
tile_c[stride_c * 1 + 0] = hn::ReduceSum(df, c10) + addon0;
tile_c[stride_c * 1 + 1] = hn::ReduceSum(df, c11) + addon1;
tile_c[stride_c * 1 + 2] = hn::ReduceSum(df, c12) + addon2;
tile_c[stride_c * 1 + 3] = hn::ReduceSum(df, c13) + addon3;
if (kNumRows == 2) return;
tile_c[stride_c * 2 + 0] = hn::ReduceSum(df, c20) + addon0;
tile_c[stride_c * 2 + 1] = hn::ReduceSum(df, c21) + addon1;
tile_c[stride_c * 2 + 2] = hn::ReduceSum(df, c22) + addon2;
tile_c[stride_c * 2 + 3] = hn::ReduceSum(df, c23) + addon3;
if (kNumRows == 3) return;
tile_c[stride_c * 3 + 0] = hn::ReduceSum(df, c30) + addon0;
tile_c[stride_c * 3 + 1] = hn::ReduceSum(df, c31) + addon1;
tile_c[stride_c * 3 + 2] = hn::ReduceSum(df, c32) + addon2;
tile_c[stride_c * 3 + 3] = hn::ReduceSum(df, c33) + addon3;
}
// Accumulates a single kNumRowsx4 tile of A x B into C. B is transposed, so we // Accumulates a single kNumRowsx4 tile of A x B into C. B is transposed, so we
// can iterate over both A and B with consecutive vector loads. kNumRows<=4. // can iterate over both A and B with consecutive vector loads. kNumRows<=4.
// Shared between parallelized and sequential (loop) callers. // Shared between parallelized and sequential (loop) callers.
template <size_t kNumRows, size_t kColsA_RowsB, typename MatT, HWY_IF_F32(MatT)> template <size_t kNumRows, size_t kColsA_RowsB, bool kAdd, typename MatT,
HWY_IF_F32(MatT), typename AddT>
HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A, HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
const MatT* HWY_RESTRICT B, MatT* HWY_RESTRICT C, const MatT* HWY_RESTRICT B, MatT* HWY_RESTRICT C,
const AddT* add,
const size_t idx_tile, const size_t xtiles, const size_t idx_tile, const size_t xtiles,
const size_t stride_a, const size_t stride_b, const size_t stride_a, const size_t stride_b,
const size_t stride_c) { const size_t stride_c) {
@ -203,21 +246,21 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
c01 = hn::MulAdd(a0, b1, c01); c01 = hn::MulAdd(a0, b1, c01);
c02 = hn::MulAdd(a0, b2, c02); c02 = hn::MulAdd(a0, b2, c02);
c03 = hn::MulAdd(a0, b3, c03); c03 = hn::MulAdd(a0, b3, c03);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab); const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab);
c10 = hn::MulAdd(a1, b0, c10); c10 = hn::MulAdd(a1, b0, c10);
c11 = hn::MulAdd(a1, b1, c11); c11 = hn::MulAdd(a1, b1, c11);
c12 = hn::MulAdd(a1, b2, c12); c12 = hn::MulAdd(a1, b2, c12);
c13 = hn::MulAdd(a1, b3, c13); c13 = hn::MulAdd(a1, b3, c13);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab); const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab);
c20 = hn::MulAdd(a2, b0, c20); c20 = hn::MulAdd(a2, b0, c20);
c21 = hn::MulAdd(a2, b1, c21); c21 = hn::MulAdd(a2, b1, c21);
c22 = hn::MulAdd(a2, b2, c22); c22 = hn::MulAdd(a2, b2, c22);
c23 = hn::MulAdd(a2, b3, c23); c23 = hn::MulAdd(a2, b3, c23);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab); const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab);
c30 = hn::MulAdd(a3, b0, c30); c30 = hn::MulAdd(a3, b0, c30);
@ -227,9 +270,16 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
} }
float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c;
StoreHorizontalSums<kNumRows>( if constexpr (kAdd) {
d, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23, const AddT* tile_add = add + row_b_col_c;
c30, c31, c32, c33, tile_c, stride_c); StoreHorizontalSumsAdd<kNumRows>(
d, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_add, tile_c, stride_c);
} else {
StoreHorizontalSums<kNumRows>(
d, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_c, stride_c);
}
} }
#undef GEMMA_NATIVE_BF16 #undef GEMMA_NATIVE_BF16
@ -241,10 +291,11 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
#endif #endif
// As above, for MatT=bf16 // As above, for MatT=bf16
template <size_t kNumRows, size_t kColsA_RowsB, typename MatT, template <size_t kNumRows, size_t kColsA_RowsB, bool kAdd, typename MatT,
HWY_IF_BF16(MatT)> HWY_IF_BF16(MatT), typename AddT>
HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A, HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
const MatT* HWY_RESTRICT B, float* HWY_RESTRICT C, const MatT* HWY_RESTRICT B, float* HWY_RESTRICT C,
const AddT* add,
const size_t idx_tile, const size_t xtiles, const size_t idx_tile, const size_t xtiles,
const size_t stride_a, const size_t stride_b, const size_t stride_a, const size_t stride_b,
const size_t stride_c) { const size_t stride_c) {
@ -311,21 +362,21 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
c01 = hn::ReorderWidenMulAccumulate(df, a0, b1, c01, unused_sum1); c01 = hn::ReorderWidenMulAccumulate(df, a0, b1, c01, unused_sum1);
c02 = hn::ReorderWidenMulAccumulate(df, a0, b2, c02, unused_sum1); c02 = hn::ReorderWidenMulAccumulate(df, a0, b2, c02, unused_sum1);
c03 = hn::ReorderWidenMulAccumulate(df, a0, b3, c03, unused_sum1); c03 = hn::ReorderWidenMulAccumulate(df, a0, b3, c03, unused_sum1);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab); const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab);
c10 = hn::ReorderWidenMulAccumulate(df, a1, b0, c10, unused_sum1); c10 = hn::ReorderWidenMulAccumulate(df, a1, b0, c10, unused_sum1);
c11 = hn::ReorderWidenMulAccumulate(df, a1, b1, c11, unused_sum1); c11 = hn::ReorderWidenMulAccumulate(df, a1, b1, c11, unused_sum1);
c12 = hn::ReorderWidenMulAccumulate(df, a1, b2, c12, unused_sum1); c12 = hn::ReorderWidenMulAccumulate(df, a1, b2, c12, unused_sum1);
c13 = hn::ReorderWidenMulAccumulate(df, a1, b3, c13, unused_sum1); c13 = hn::ReorderWidenMulAccumulate(df, a1, b3, c13, unused_sum1);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab); const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab);
c20 = hn::ReorderWidenMulAccumulate(df, a2, b0, c20, unused_sum1); c20 = hn::ReorderWidenMulAccumulate(df, a2, b0, c20, unused_sum1);
c21 = hn::ReorderWidenMulAccumulate(df, a2, b1, c21, unused_sum1); c21 = hn::ReorderWidenMulAccumulate(df, a2, b1, c21, unused_sum1);
c22 = hn::ReorderWidenMulAccumulate(df, a2, b2, c22, unused_sum1); c22 = hn::ReorderWidenMulAccumulate(df, a2, b2, c22, unused_sum1);
c23 = hn::ReorderWidenMulAccumulate(df, a2, b3, c23, unused_sum1); c23 = hn::ReorderWidenMulAccumulate(df, a2, b3, c23, unused_sum1);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab); const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab);
c30 = hn::ReorderWidenMulAccumulate(df, a3, b0, c30, unused_sum1); c30 = hn::ReorderWidenMulAccumulate(df, a3, b0, c30, unused_sum1);
@ -348,7 +399,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
c01 = hn::MulAdd(a0, b1, c01); c01 = hn::MulAdd(a0, b1, c01);
c02 = hn::MulAdd(a0, b2, c02); c02 = hn::MulAdd(a0, b2, c02);
c03 = hn::MulAdd(a0, b3, c03); c03 = hn::MulAdd(a0, b3, c03);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const VF a1 = const VF a1 =
hn::PromoteTo(df, hn::LoadU(d, tile_a + stride_a * 1 + col_ab)); hn::PromoteTo(df, hn::LoadU(d, tile_a + stride_a * 1 + col_ab));
@ -356,7 +407,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
c11 = hn::MulAdd(a1, b1, c11); c11 = hn::MulAdd(a1, b1, c11);
c12 = hn::MulAdd(a1, b2, c12); c12 = hn::MulAdd(a1, b2, c12);
c13 = hn::MulAdd(a1, b3, c13); c13 = hn::MulAdd(a1, b3, c13);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const VF a2 = const VF a2 =
hn::PromoteTo(df, hn::LoadU(d, tile_a + stride_a * 2 + col_ab)); hn::PromoteTo(df, hn::LoadU(d, tile_a + stride_a * 2 + col_ab));
@ -364,7 +415,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
c21 = hn::MulAdd(a2, b1, c21); c21 = hn::MulAdd(a2, b1, c21);
c22 = hn::MulAdd(a2, b2, c22); c22 = hn::MulAdd(a2, b2, c22);
c23 = hn::MulAdd(a2, b3, c23); c23 = hn::MulAdd(a2, b3, c23);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const VF a3 = const VF a3 =
hn::PromoteTo(df, hn::LoadU(d, tile_a + stride_a * 3 + col_ab)); hn::PromoteTo(df, hn::LoadU(d, tile_a + stride_a * 3 + col_ab));
@ -381,17 +432,27 @@ HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
#endif #endif
float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c;
StoreHorizontalSums<kNumRows>( if constexpr (kAdd) {
df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, const AddT* tile_add = add + row_b_col_c;
c23, c30, c31, c32, c33, tile_c, stride_c); StoreHorizontalSumsAdd<kNumRows>(
df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_add, tile_c, stride_c);
} else {
StoreHorizontalSums<kNumRows>(
df, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_c, stride_c);
}
} }
// Same as above, but with mixed Mat types: (f32, compressed). // Same as above, but with mixed Mat types: (f32, compressed).
template <size_t kNumRows, size_t kColsA_RowsB, typename MatTA, template <size_t kNumRows, size_t kColsA_RowsB, bool kAdd, typename MatTA,
HWY_IF_F32(MatTA), typename MatTB, HWY_IF_T_SIZE(MatTB, 1)> HWY_IF_F32(MatTA), typename MatTB, HWY_IF_T_SIZE(MatTB, 1),
typename AddT>
HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A, HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
const MatTB* HWY_RESTRICT B, const MatTB* HWY_RESTRICT B,
float* HWY_RESTRICT C, const size_t idx_tile, float* HWY_RESTRICT C,
const AddT* add,
const size_t idx_tile,
const size_t xtiles, const size_t stride_a, const size_t xtiles, const size_t stride_a,
const size_t stride_b, const size_t stride_c) { const size_t stride_b, const size_t stride_c) {
constexpr size_t kRegRows = 4; constexpr size_t kRegRows = 4;
@ -450,21 +511,21 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c01 = hn::MulAdd(a0, b1, c01); c01 = hn::MulAdd(a0, b1, c01);
c02 = hn::MulAdd(a0, b2, c02); c02 = hn::MulAdd(a0, b2, c02);
c03 = hn::MulAdd(a0, b3, c03); c03 = hn::MulAdd(a0, b3, c03);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab); const V a1 = hn::LoadU(d, tile_a + stride_a * 1 + col_ab);
c10 = hn::MulAdd(a1, b0, c10); c10 = hn::MulAdd(a1, b0, c10);
c11 = hn::MulAdd(a1, b1, c11); c11 = hn::MulAdd(a1, b1, c11);
c12 = hn::MulAdd(a1, b2, c12); c12 = hn::MulAdd(a1, b2, c12);
c13 = hn::MulAdd(a1, b3, c13); c13 = hn::MulAdd(a1, b3, c13);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab); const V a2 = hn::LoadU(d, tile_a + stride_a * 2 + col_ab);
c20 = hn::MulAdd(a2, b0, c20); c20 = hn::MulAdd(a2, b0, c20);
c21 = hn::MulAdd(a2, b1, c21); c21 = hn::MulAdd(a2, b1, c21);
c22 = hn::MulAdd(a2, b2, c22); c22 = hn::MulAdd(a2, b2, c22);
c23 = hn::MulAdd(a2, b3, c23); c23 = hn::MulAdd(a2, b3, c23);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab); const V a3 = hn::LoadU(d, tile_a + stride_a * 3 + col_ab);
c30 = hn::MulAdd(a3, b0, c30); c30 = hn::MulAdd(a3, b0, c30);
@ -474,17 +535,27 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
} }
float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c;
StoreHorizontalSums<kNumRows>( if constexpr (kAdd) {
d, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, const AddT* tile_add = add + row_b_col_c;
c23, c30, c31, c32, c33, tile_c, stride_c); StoreHorizontalSumsAdd<kNumRows>(
d, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_add, tile_c, stride_c);
} else {
StoreHorizontalSums<kNumRows>(
d, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_c, stride_c);
}
} }
// Same as above, but with mixed Mat types: (bf16, compressed)). // Same as above, but with mixed Mat types: (bf16, compressed).
template <size_t kNumRows, size_t kColsA_RowsB, typename MatTA, template <size_t kNumRows, size_t kColsA_RowsB, bool kAdd, typename MatTA,
HWY_IF_BF16(MatTA), typename MatTB, HWY_IF_T_SIZE(MatTB, 1)> HWY_IF_BF16(MatTA), typename MatTB, HWY_IF_T_SIZE(MatTB, 1),
typename AddT>
HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A, HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
const MatTB* HWY_RESTRICT B, const MatTB* HWY_RESTRICT B,
float* HWY_RESTRICT C, const size_t idx_tile, float* HWY_RESTRICT C,
const AddT* add,
const size_t idx_tile,
const size_t xtiles, const size_t stride_a, const size_t xtiles, const size_t stride_a,
const size_t stride_b, const size_t stride_c) { const size_t stride_b, const size_t stride_c) {
constexpr size_t kRegRows = 4; constexpr size_t kRegRows = 4;
@ -549,7 +620,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c01 = hn::MulAdd(a0, b1, c01); c01 = hn::MulAdd(a0, b1, c01);
c02 = hn::MulAdd(a0, b2, c02); c02 = hn::MulAdd(a0, b2, c02);
c03 = hn::MulAdd(a0, b3, c03); c03 = hn::MulAdd(a0, b3, c03);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const V a1 = const V a1 =
hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 1 + col_ab)); hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 1 + col_ab));
@ -557,7 +628,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c11 = hn::MulAdd(a1, b1, c11); c11 = hn::MulAdd(a1, b1, c11);
c12 = hn::MulAdd(a1, b2, c12); c12 = hn::MulAdd(a1, b2, c12);
c13 = hn::MulAdd(a1, b3, c13); c13 = hn::MulAdd(a1, b3, c13);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const V a2 = const V a2 =
hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 2 + col_ab)); hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 2 + col_ab));
@ -565,7 +636,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c21 = hn::MulAdd(a2, b1, c21); c21 = hn::MulAdd(a2, b1, c21);
c22 = hn::MulAdd(a2, b2, c22); c22 = hn::MulAdd(a2, b2, c22);
c23 = hn::MulAdd(a2, b3, c23); c23 = hn::MulAdd(a2, b3, c23);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const V a3 = const V a3 =
hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 3 + col_ab)); hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 3 + col_ab));
@ -576,18 +647,26 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
} }
float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c;
StoreHorizontalSums<kNumRows>( if constexpr (kAdd) {
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, const AddT* tile_add = add + row_b_col_c;
c22, c23, c30, c31, c32, c33, tile_c, stride_c); StoreHorizontalSumsAdd<kNumRows>(
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_add, tile_c, stride_c);
} else {
StoreHorizontalSums<kNumRows>(
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_c, stride_c);
}
} }
// Same as above, but with mixed Mat types: (f32, bf16). // Same as above, but with mixed Mat types: (f32, bf16).
template <size_t kNumRows, size_t kColsA_RowsB, typename MatTA, template <size_t kNumRows, size_t kColsA_RowsB, bool kAdd, typename MatTA,
HWY_IF_F32(MatTA), HWY_IF_F32(MatTA),
typename MatTB, HWY_IF_BF16(MatTB)> typename MatTB, HWY_IF_BF16(MatTB), typename AddT>
HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A, HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
const MatTB* HWY_RESTRICT B, const MatTB* HWY_RESTRICT B,
float* HWY_RESTRICT C, const size_t idx_tile, float* HWY_RESTRICT C, const AddT* add,
const size_t idx_tile,
const size_t xtiles, const size_t stride_a, const size_t xtiles, const size_t stride_a,
const size_t stride_b, const size_t stride_c) { const size_t stride_b, const size_t stride_c) {
constexpr size_t kRegRows = 4; constexpr size_t kRegRows = 4;
@ -651,21 +730,21 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c01 = hn::MulAdd(a0, b1, c01); c01 = hn::MulAdd(a0, b1, c01);
c02 = hn::MulAdd(a0, b2, c02); c02 = hn::MulAdd(a0, b2, c02);
c03 = hn::MulAdd(a0, b3, c03); c03 = hn::MulAdd(a0, b3, c03);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const VF a1 = hn::LoadU(d32, tile_a + stride_a * 1 + col_ab); const VF a1 = hn::LoadU(d32, tile_a + stride_a * 1 + col_ab);
c10 = hn::MulAdd(a1, b0, c10); c10 = hn::MulAdd(a1, b0, c10);
c11 = hn::MulAdd(a1, b1, c11); c11 = hn::MulAdd(a1, b1, c11);
c12 = hn::MulAdd(a1, b2, c12); c12 = hn::MulAdd(a1, b2, c12);
c13 = hn::MulAdd(a1, b3, c13); c13 = hn::MulAdd(a1, b3, c13);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const VF a2 = hn::LoadU(d32, tile_a + stride_a * 2 + col_ab); const VF a2 = hn::LoadU(d32, tile_a + stride_a * 2 + col_ab);
c20 = hn::MulAdd(a2, b0, c20); c20 = hn::MulAdd(a2, b0, c20);
c21 = hn::MulAdd(a2, b1, c21); c21 = hn::MulAdd(a2, b1, c21);
c22 = hn::MulAdd(a2, b2, c22); c22 = hn::MulAdd(a2, b2, c22);
c23 = hn::MulAdd(a2, b3, c23); c23 = hn::MulAdd(a2, b3, c23);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const VF a3 = hn::LoadU(d32, tile_a + stride_a * 3 + col_ab); const VF a3 = hn::LoadU(d32, tile_a + stride_a * 3 + col_ab);
c30 = hn::MulAdd(a3, b0, c30); c30 = hn::MulAdd(a3, b0, c30);
@ -675,17 +754,25 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
} }
float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c;
StoreHorizontalSums<kNumRows>( if constexpr (kAdd) {
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, const AddT* tile_add = add + row_b_col_c;
c22, c23, c30, c31, c32, c33, tile_c, stride_c); StoreHorizontalSumsAdd<kNumRows>(
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_add, tile_c, stride_c);
} else {
StoreHorizontalSums<kNumRows>(
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_c, stride_c);
}
} }
// Same as above, but with mixed Mat types: (bf16, f32). // Same as above, but with mixed Mat types: (bf16, f32).
template <size_t kNumRows, size_t kColsA_RowsB, typename MatTA, template <size_t kNumRows, size_t kColsA_RowsB, bool kAdd, typename MatTA,
HWY_IF_BF16(MatTA), typename MatTB, HWY_IF_F32(MatTB)> HWY_IF_BF16(MatTA), typename MatTB, HWY_IF_F32(MatTB), typename AddT>
HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A, HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
const MatTB* HWY_RESTRICT B, const MatTB* HWY_RESTRICT B,
float* HWY_RESTRICT C, const size_t idx_tile, float* HWY_RESTRICT C, const AddT* add,
const size_t idx_tile,
const size_t xtiles, const size_t stride_a, const size_t xtiles, const size_t stride_a,
const size_t stride_b, const size_t stride_c) { const size_t stride_b, const size_t stride_c) {
constexpr size_t kRegRows = 4; constexpr size_t kRegRows = 4;
@ -746,7 +833,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c01 = hn::MulAdd(a0, b1, c01); c01 = hn::MulAdd(a0, b1, c01);
c02 = hn::MulAdd(a0, b2, c02); c02 = hn::MulAdd(a0, b2, c02);
c03 = hn::MulAdd(a0, b3, c03); c03 = hn::MulAdd(a0, b3, c03);
if (kNumRows == 1) continue; if constexpr (kNumRows == 1) continue;
const VF a1 = const VF a1 =
hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 1 + col_ab)); hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 1 + col_ab));
@ -754,7 +841,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c11 = hn::MulAdd(a1, b1, c11); c11 = hn::MulAdd(a1, b1, c11);
c12 = hn::MulAdd(a1, b2, c12); c12 = hn::MulAdd(a1, b2, c12);
c13 = hn::MulAdd(a1, b3, c13); c13 = hn::MulAdd(a1, b3, c13);
if (kNumRows == 2) continue; if constexpr (kNumRows == 2) continue;
const VF a2 = const VF a2 =
hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 2 + col_ab)); hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 2 + col_ab));
@ -762,7 +849,7 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
c21 = hn::MulAdd(a2, b1, c21); c21 = hn::MulAdd(a2, b1, c21);
c22 = hn::MulAdd(a2, b2, c22); c22 = hn::MulAdd(a2, b2, c22);
c23 = hn::MulAdd(a2, b3, c23); c23 = hn::MulAdd(a2, b3, c23);
if (kNumRows == 3) continue; if constexpr (kNumRows == 3) continue;
const VF a3 = const VF a3 =
hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 3 + col_ab)); hn::PromoteTo(d32, hn::LoadU(d16, tile_a + stride_a * 3 + col_ab));
@ -773,19 +860,27 @@ HWY_INLINE void GEMM_4x4_Tile(const MatTA* HWY_RESTRICT A,
} }
float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c; float* HWY_RESTRICT tile_c = C + stride_c * row_a + row_b_col_c;
StoreHorizontalSums<kNumRows>(d32, c00, c01, c02, c03, c10, c11, c12, c13, if constexpr (kAdd) {
c20, c21, c22, c23, c30, c31, c32, c33, tile_c, const AddT* tile_add = add + row_b_col_c;
stride_c); StoreHorizontalSumsAdd<kNumRows>(
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_add, tile_c, stride_c);
} else {
StoreHorizontalSums<kNumRows>(
d32, c00, c01, c02, c03, c10, c11, c12, c13, c20, c21, c22, c23,
c30, c31, c32, c33, tile_c, stride_c);
}
} }
// Tiled 4x4 GEMM. Typically batch_size is 1..512, kColsA_RowsB is 3k or 24k, // Tiled 4x4 GEMM. Typically batch_size is 1..512, kColsA_RowsB is 3k or 24k,
// and kColsBC is 24k or 3k. Note: B is transposed (column-major). // and kColsBC is 24k or 3k. Note: B is transposed (column-major).
// NOTE that batch_size is the number of rows of A and C. // NOTE that batch_size is the number of rows of A and C.
// This function processes tiles in parallel with a work-stealing thread pool. // This function processes tiles in parallel with a work-stealing thread pool.
template <size_t kColsA_RowsB, size_t kColsBC, typename MatTA, template <size_t kColsA_RowsB, size_t kColsBC, bool kAdd, typename MatTA,
typename MatTB, typename OutT> typename MatTB, typename OutT, typename AddT>
HWY_NOINLINE void MatMul_4x4_Batch( HWY_NOINLINE void MatMul_4x4_Batch_Add(
size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B, size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B,
OutT* HWY_RESTRICT C, hwy::ThreadPool& pool) { OutT* HWY_RESTRICT C, const AddT* add, hwy::ThreadPool& pool) {
// Process reg-sized tiles of C in parallel. We currently write C directly, // Process reg-sized tiles of C in parallel. We currently write C directly,
// which touches more memory than fits in L3. TODO: add another level of loops // which touches more memory than fits in L3. TODO: add another level of loops
// so that we finish one L3-sized piece of C at a time. // so that we finish one L3-sized piece of C at a time.
@ -810,51 +905,31 @@ HWY_NOINLINE void MatMul_4x4_Batch(
HWY_ASSERT(num_rows > 0); HWY_ASSERT(num_rows > 0);
switch (num_rows) { switch (num_rows) {
case 1: case 1:
GEMM_4x4_Tile<1, kColsA_RowsB>( GEMM_4x4_Tile<1, kColsA_RowsB, kAdd>(
A, B, C, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC);
break; break;
case 2: case 2:
GEMM_4x4_Tile<2, kColsA_RowsB>( GEMM_4x4_Tile<2, kColsA_RowsB, kAdd>(
A, B, C, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC);
break; break;
case 3: case 3:
GEMM_4x4_Tile<3, kColsA_RowsB>( GEMM_4x4_Tile<3, kColsA_RowsB, kAdd>(
A, B, C, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC);
break; break;
default: default:
GEMM_4x4_Tile<4, kColsA_RowsB>( GEMM_4x4_Tile<4, kColsA_RowsB, kAdd>(
A, B, C, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC); A, B, C, add, idx_tile, kTilesX, kStrideA, kStrideB, kStrideC);
} }
}); });
} }
// Largely unoptimized; reordered innermost loops nets ~5-10X speedup on template <size_t kColsA_RowsB, size_t kColsBC, typename MatTA,
// ops_test across instruction sets. typename MatTB, typename OutT>
template <size_t kM, size_t kN, size_t kK, typename MatTA, typename MatTB> HWY_NOINLINE void MatMul_4x4_Batch(
HWY_INLINE void MatMulSlow(const MatTA* HWY_RESTRICT a, size_t batch_size, const MatTA* HWY_RESTRICT A, const MatTB* HWY_RESTRICT B,
const MatTB* HWY_RESTRICT b, OutT* HWY_RESTRICT C, hwy::ThreadPool& pool) {
float* HWY_RESTRICT out) { MatMul_4x4_Batch_Add<kColsA_RowsB, kColsBC, /*kAdd=*/false>(
for (size_t i = 0; i < kM; ++i) { batch_size, A, B, C, /*add=*/static_cast<OutT*>(nullptr), pool);
for (size_t k = 0; k < kN; ++k) {
for (size_t j = 0; j < kK; ++j) {
const float a1 = hwy::ConvertScalarTo<float>(a[i * kN + k]);
const float b1 = hwy::ConvertScalarTo<float>(b[k * kK + j]);
out[i * kK + j] += a1 * b1;
}
}
}
}
template <size_t kM, size_t kN, size_t kK, typename MatTA>
HWY_INLINE void MatMulSlow(const MatTA* HWY_RESTRICT a,
const SfpStream* HWY_RESTRICT b_sfp_stream,
float* HWY_RESTRICT out) {
const hn::ScalableTag<float> d;
hwy::AlignedFreeUniquePtr<float[]> b = hwy::AllocateAligned<float>(kK * kN);
CompressTraits<SfpStream>::Decompress(d,
/*in_capacity=*/0, b_sfp_stream, 0,
b.get(), kK * kN);
MatMulSlow<kM, kN, kK>(a, b.get(), out);
} }
// Largely unoptimized; reordered innermost loops nets ~5-10X speedup on // Largely unoptimized; reordered innermost loops nets ~5-10X speedup on
@ -863,6 +938,7 @@ template <size_t kN, size_t kK, typename MatTA, typename MatTB,
HWY_IF_T_SIZE_GT(MatTB, 1)> HWY_IF_T_SIZE_GT(MatTB, 1)>
HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a, HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a,
const MatTB* HWY_RESTRICT b, const MatTB* HWY_RESTRICT b,
const float* add,
float* HWY_RESTRICT out) { float* HWY_RESTRICT out) {
for (size_t i = 0; i < batch_size; ++i) { for (size_t i = 0; i < batch_size; ++i) {
for (size_t k = 0; k < kN; ++k) { for (size_t k = 0; k < kN; ++k) {
@ -872,6 +948,11 @@ HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a,
out[i * kK + j] += a1 * b1; out[i * kK + j] += a1 * b1;
} }
} }
if (add != nullptr) {
for (size_t j = 0; j < kK; ++j) {
out[i * kK + j] += add[j];
}
}
} }
} }
@ -881,13 +962,13 @@ template <size_t kN, size_t kK, typename MatTA, typename MatTB,
HWY_IF_T_SIZE(MatTB, 1)> HWY_IF_T_SIZE(MatTB, 1)>
HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a, HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a,
const MatTB* HWY_RESTRICT b_compr, const MatTB* HWY_RESTRICT b_compr,
const float* add,
float* HWY_RESTRICT out) { float* HWY_RESTRICT out) {
const hn::ScalableTag<float> d; const hn::ScalableTag<float> d;
hwy::AlignedFreeUniquePtr<float[]> b = hwy::AllocateAligned<float>(kK * kN); hwy::AlignedFreeUniquePtr<float[]> b = hwy::AllocateAligned<float>(kK * kN);
CompressTraits<MatTB>::Decompress(d, CompressTraits<MatTB>::Decompress(d, /*in_capacity=*/0, b_compr, 0, b.get(),
/*in_capacity=*/0, b_compr, 0, b.get(),
kK * kN); kK * kN);
MatMulSlowBatch<kN, kK>(batch_size, a, b.get(), out); MatMulSlowBatch<kN, kK>(batch_size, a, b.get(), add, out);
} }
HWY_INLINE void ToEvenOddF32(const hwy::bfloat16_t* HWY_RESTRICT vec_aligned, HWY_INLINE void ToEvenOddF32(const hwy::bfloat16_t* HWY_RESTRICT vec_aligned,

View File

@ -13,6 +13,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <cstdio>
#include <memory> #include <memory>
#ifndef HWY_DISABLED_TARGETS #ifndef HWY_DISABLED_TARGETS
#define HWY_DISABLED_TARGETS HWY_SCALAR #define HWY_DISABLED_TARGETS HWY_SCALAR
@ -506,68 +507,80 @@ void AssertClose(const hwy::AlignedFreeUniquePtr<float[]>& a,
} }
} }
template <size_t kM, size_t kN, size_t kK, typename MatTA, template <size_t kM, size_t kN, size_t kK, bool kAdd, typename MatTA,
typename MatTB = MatTA> typename MatTB = MatTA>
void TestTiledBatchMatMul() { void TestTiledBatchMatMul() {
fprintf(stderr, "TestTiledBatchMatMul %lu, %lu, %lu", kM, kN, kK); fprintf(stderr, "TestTiledBatchMatMul %lu, %lu, %lu, add=%d ", kM, kN, kK,
kAdd);
hwy::ThreadPool pool(3); hwy::ThreadPool pool(3);
std::unique_ptr<CompressedArray<MatTA, kM * kN>> a = std::unique_ptr<CompressedArray<MatTA, kM * kN>> a =
GenerateMatHeap<MatTA, kM, kN>(0, pool); GenerateMatHeap<MatTA, kM, kN>(0, pool);
std::unique_ptr<CompressedArray<MatTB, kN * kK>> b = std::unique_ptr<CompressedArray<MatTB, kN * kK>> b =
GenerateMatHeap<MatTB, kN, kK>(0, pool); GenerateMatHeap<MatTB, kN, kK>(0, pool);
std::unique_ptr<CompressedArray<float, kK>> add =
GenerateMatHeap<float, 1, kK>(0, pool);
std::unique_ptr<CompressedArray<float, kM * kK>> c_slow = std::unique_ptr<CompressedArray<float, kM * kK>> c_slow =
GenerateZeroMatHeap<float, kM, kK>(pool); GenerateZeroMatHeap<float, kM, kK>(pool);
MatMulSlowBatch<kN, kK>(kM, a->data(), b->data(), c_slow->data()); MatMulSlowBatch<kN, kK>(kM, a->data(), b->data(),
kAdd ? add->data() : nullptr, c_slow->data());
hwy::AlignedFreeUniquePtr<float[]> c = hwy::AllocateAligned<float>(kM * kK); hwy::AlignedFreeUniquePtr<float[]> c = hwy::AllocateAligned<float>(kM * kK);
std::unique_ptr<CompressedArray<MatTB, kN * kK>> b_trans = std::unique_ptr<CompressedArray<MatTB, kN * kK>> b_trans =
GenerateTransposeMatHeap<MatTB, kN, kK>(0, pool); GenerateTransposeMatHeap<MatTB, kN, kK>(0, pool);
MatMul_4x4_Batch<kN, kK>(kM, a->data(), b_trans->data(), c.get(), pool); if (kAdd) {
MatMul_4x4_Batch_Add<kN, kK, kAdd>(kM, a->data(), b_trans->data(), c.get(),
add->data(), pool);
} else {
MatMul_4x4_Batch<kN, kK>(kM, a->data(), b_trans->data(), c.get(), pool);
}
AssertClose(c_slow->data(), c.get(), kM * kK); AssertClose(c_slow->data(), c.get(), kM * kK);
} }
void TestAllTiledBatchMatMul() { void TestAllTiledBatchMatMul() {
// medium-sized square test // medium-sized square test
TestTiledBatchMatMul<512, 512, 512, float>(); TestTiledBatchMatMul<512, 512, 512, /*kAdd=*/false, float>();
TestTiledBatchMatMul<512, 512, 512, hwy::bfloat16_t>(); TestTiledBatchMatMul<512, 512, 512, /*kAdd=*/true, hwy::bfloat16_t>();
TestTiledBatchMatMul<512, 512, 512, float, hwy::bfloat16_t>(); TestTiledBatchMatMul<512, 512, 512, /*kAdd=*/false, float, hwy::bfloat16_t>();
TestTiledBatchMatMul<512, 512, 512, hwy::bfloat16_t, float>(); TestTiledBatchMatMul<512, 512, 512, /*kAdd=*/true, hwy::bfloat16_t, float>();
TestTiledBatchMatMul<512, 512, 512, float, SfpStream>(); TestTiledBatchMatMul<512, 512, 512, /*kAdd=*/false, float, SfpStream>();
TestTiledBatchMatMul<512, 512, 512, hwy::bfloat16_t, SfpStream>(); TestTiledBatchMatMul<512, 512, 512, /*kAdd=*/true, hwy::bfloat16_t,
SfpStream>();
// minimal non-square test // minimal non-square test
TestTiledBatchMatMul<35, 128, 32, float>(); TestTiledBatchMatMul<35, 128, 32, /*kAdd=*/false, float>();
TestTiledBatchMatMul<34, 128, 32, hwy::bfloat16_t>(); TestTiledBatchMatMul<34, 128, 32, /*kAdd=*/true, hwy::bfloat16_t>();
TestTiledBatchMatMul<33, 128, 32, float, hwy::bfloat16_t>(); TestTiledBatchMatMul<33, 128, 32, /*kAdd=*/false, float, hwy::bfloat16_t>();
TestTiledBatchMatMul<33, 128, 32, hwy::bfloat16_t, float>(); TestTiledBatchMatMul<33, 128, 32, /*kAdd=*/true, hwy::bfloat16_t, float>();
TestTiledBatchMatMul<31, 128, 32, float, SfpStream>(); TestTiledBatchMatMul<31, 128, 32, /*kAdd=*/false, float, SfpStream>();
TestTiledBatchMatMul<29, 128, 32, hwy::bfloat16_t, SfpStream>(); TestTiledBatchMatMul<29, 128, 32, /*kAdd=*/true, hwy::bfloat16_t,
TestTiledBatchMatMul<4, 128, 8, float>(); SfpStream>();
TestTiledBatchMatMul<4, 128, 8, hwy::bfloat16_t>(); TestTiledBatchMatMul<4, 128, 8, /*kAdd=*/true, float>();
TestTiledBatchMatMul<4, 128, 8, float, hwy::bfloat16_t>(); TestTiledBatchMatMul<4, 128, 8, /*kAdd=*/false, hwy::bfloat16_t>();
TestTiledBatchMatMul<4, 128, 8, hwy::bfloat16_t, float>(); TestTiledBatchMatMul<4, 128, 8, /*kAdd=*/true, float, hwy::bfloat16_t>();
TestTiledBatchMatMul<4, 128, 8, float, SfpStream>(); TestTiledBatchMatMul<4, 128, 8, /*kAdd=*/false, hwy::bfloat16_t, float>();
TestTiledBatchMatMul<4, 128, 8, hwy::bfloat16_t, SfpStream>(); TestTiledBatchMatMul<4, 128, 8, /*kAdd=*/true, float, SfpStream>();
TestTiledBatchMatMul<3, 128, 32, float>(); TestTiledBatchMatMul<4, 128, 8, /*kAdd=*/false, hwy::bfloat16_t, SfpStream>();
TestTiledBatchMatMul<3, 128, 32, hwy::bfloat16_t>(); TestTiledBatchMatMul<3, 128, 32, /*kAdd=*/false, float>();
TestTiledBatchMatMul<3, 128, 32, float, hwy::bfloat16_t>(); TestTiledBatchMatMul<3, 128, 32, /*kAdd=*/true, hwy::bfloat16_t>();
TestTiledBatchMatMul<3, 128, 32, hwy::bfloat16_t, float>(); TestTiledBatchMatMul<3, 128, 32, /*kAdd=*/false, float, hwy::bfloat16_t>();
TestTiledBatchMatMul<3, 128, 32, float, SfpStream>(); TestTiledBatchMatMul<3, 128, 32, /*kAdd=*/true, hwy::bfloat16_t, float>();
TestTiledBatchMatMul<3, 128, 32, hwy::bfloat16_t, SfpStream>(); TestTiledBatchMatMul<3, 128, 32, /*kAdd=*/false, float, SfpStream>();
TestTiledBatchMatMul<2, 128, 16, float>(); TestTiledBatchMatMul<3, 128, 32, /*kAdd=*/true, hwy::bfloat16_t, SfpStream>();
TestTiledBatchMatMul<2, 128, 16, hwy::bfloat16_t>(); TestTiledBatchMatMul<2, 128, 16, /*kAdd=*/true, float>();
TestTiledBatchMatMul<2, 128, 16, float, hwy::bfloat16_t>(); TestTiledBatchMatMul<2, 128, 16, /*kAdd=*/false, hwy::bfloat16_t>();
TestTiledBatchMatMul<2, 128, 16, hwy::bfloat16_t, float>(); TestTiledBatchMatMul<2, 128, 16, /*kAdd=*/true, float, hwy::bfloat16_t>();
TestTiledBatchMatMul<2, 128, 16, float, SfpStream>(); TestTiledBatchMatMul<2, 128, 16, /*kAdd=*/false, hwy::bfloat16_t, float>();
TestTiledBatchMatMul<2, 128, 16, hwy::bfloat16_t, SfpStream>(); TestTiledBatchMatMul<2, 128, 16, /*kAdd=*/true, float, SfpStream>();
TestTiledBatchMatMul<1, 128, 32, float>(); TestTiledBatchMatMul<2, 128, 16, /*kAdd=*/false, hwy::bfloat16_t,
TestTiledBatchMatMul<1, 128, 32, hwy::bfloat16_t>(); SfpStream>();
TestTiledBatchMatMul<1, 128, 32, float, hwy::bfloat16_t>(); TestTiledBatchMatMul<1, 128, 32, /*kAdd=*/false, float>();
TestTiledBatchMatMul<1, 128, 32, hwy::bfloat16_t, float>(); TestTiledBatchMatMul<1, 128, 32, /*kAdd=*/true, hwy::bfloat16_t>();
TestTiledBatchMatMul<1, 128, 32, float, SfpStream>(); TestTiledBatchMatMul<1, 128, 32, /*kAdd=*/false, float, hwy::bfloat16_t>();
TestTiledBatchMatMul<1, 128, 32, hwy::bfloat16_t, SfpStream>(); TestTiledBatchMatMul<1, 128, 32, /*kAdd=*/true, hwy::bfloat16_t, float>();
TestTiledBatchMatMul<1, 128, 32, /*kAdd=*/false, float, SfpStream>();
TestTiledBatchMatMul<1, 128, 32, /*kAdd=*/true, hwy::bfloat16_t, SfpStream>();
// large-scale test // large-scale test
// TODO(philculliton): investigate rounding issues with large matrices. // TODO(philculliton): investigate rounding issues with large matrices.