Add prompt batching to Gemma.cpp.

This CL adds a new function to Gemma that allows for batching of multiple prompts. The function takes a vector of prompts and returns a vector of responses. The prompts are processed in parallel, and the responses are returned in the same order as the prompts.

PiperOrigin-RevId: 648367559
This commit is contained in:
The gemma.cpp Authors 2024-07-01 07:50:53 -07:00 committed by Copybara-Service
parent 8ac5d66575
commit da7507e6f0
6 changed files with 542 additions and 159 deletions

View File

@ -103,6 +103,10 @@ cc_library(
"gemma/activations.h",
"gemma/gemma.h",
],
exec_properties = {
# Avoid linker OOMs when building with sanitizer instrumentation.
"mem": "28g",
},
textual_hdrs = [
# Placeholder for internal file1, do not remove,
# Placeholder for internal file2, do not remove,
@ -194,6 +198,7 @@ cc_test(
":ops",
"@googletest//:gtest_main",
"//compression:io",
"@hwy//:hwy",
"@hwy//:hwy_test_util",
"@hwy//:thread_pool",
],
@ -370,6 +375,10 @@ cc_test(
"backprop/backward_test.cc",
"backprop/test_util.h",
],
exec_properties = {
# Avoid linker OOMs when building with sanitizer instrumentation.
"mem": "28g",
},
deps = [
":backprop",
":backprop_scalar",
@ -406,6 +415,10 @@ cc_test(
srcs = [
"backprop/optimize_test.cc",
],
exec_properties = {
# Avoid linker OOMs when building with sanitizer instrumentation.
"mem": "28g",
},
deps = [
":backprop",
":common",

View File

@ -18,6 +18,8 @@
#include <stdio.h>
#include <time.h>
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <memory>
#include <ostream>
@ -34,6 +36,7 @@
#include "gemma/gemma.h"
#include "util/app.h"
#include "util/args.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/highway.h"
@ -72,7 +75,11 @@ GemmaEnv::GemmaEnv(const LoaderArgs& loader, const InferenceArgs& inference,
} else {
fprintf(stderr, "Loading model...\n");
model_ = AllocateGemma(loader_, pool_);
kv_cache_ = KVCache::Create(loader_.ModelType());
kv_caches_.reserve(16);
for (int i = 0; i < 16; ++i) {
kv_caches_.push_back(new KVCache(KVCache::Create(loader_.ModelType())));
}
}
InitGenerator(inference_args_, gen_);
@ -107,8 +114,9 @@ std::pair<std::string, size_t> GemmaEnv::QueryModel(
size_t total_tokens = 0;
const double time_start = hwy::platform::Now();
const StreamFunc stream_token = [&res, &total_tokens, &time_start, this](
int token, float) {
const BatchStreamFunc batch_stream_token =
[&res, &total_tokens, &time_start, this](
size_t query_index, size_t pos, int token, float) {
++total_tokens;
res += StringFromTokens(std::vector<int>{token});
if (app_.verbosity >= 1 && total_tokens % 128 == 0) {
@ -123,8 +131,8 @@ std::pair<std::string, size_t> GemmaEnv::QueryModel(
<< "\ttemperature: " << inference_args_.temperature << "\n";
}
gcpp::TimingInfo timing_info;
runtime_config_.stream_token = stream_token;
model_->Generate(runtime_config_, tokens, /*start_pos=*/0, kv_cache_,
runtime_config_.batch_stream_token = batch_stream_token;
model_->Generate(runtime_config_, tokens, /*start_pos=*/0, *kv_caches_[0],
timing_info);
if (app_.verbosity >= 1) {
LogSpeedStats(time_start, total_tokens);
@ -132,12 +140,73 @@ std::pair<std::string, size_t> GemmaEnv::QueryModel(
return {res, total_tokens};
}
std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel2(
const hwy::Span<const hwy::Span<int>>& prompts) {
std::vector<std::pair<std::string, size_t>> res(prompts.size());
std::fill(res.begin(), res.end(), std::make_pair("", 0));
size_t total_tokens = 0;
const double time_start = hwy::platform::Now();
const BatchStreamFunc batch_stream_token =
[&res, &total_tokens, &time_start, this](
size_t query_index, size_t pos, int token, float) {
std::string token_text;
HWY_ASSERT(
model_->Tokenizer().Decode(std::vector<int>{token}, &token_text));
// fprintf(stderr, "Query %zu returned token \"%s\"\n\n", query_index,
// token_text.c_str());
std::string single_res = res[query_index].first + token_text;
size_t current_token_count = res[query_index].second + 1;
res[query_index] = std::make_pair(single_res, current_token_count);
++total_tokens;
if (app_.verbosity >= 1 && total_tokens % 128 == 0) {
LogSpeedStats(time_start, total_tokens);
}
return true;
};
if (app_.verbosity >= 2) {
std::cout << inference_args_.max_tokens << " "
<< inference_args_.max_generated_tokens << " "
<< inference_args_.temperature;
}
gcpp::TimingInfo timing_info;
runtime_config_.batch_stream_token = batch_stream_token;
model_->GenerateBatch(runtime_config_, prompts, /*start_pos=*/0, kv_caches_,
timing_info);
if (app_.verbosity >= 1) {
LogSpeedStats(time_start, total_tokens);
}
return res;
}
std::pair<std::string, size_t> GemmaEnv::QueryModel(std::string& input) {
const std::vector<int> prompt =
WrapAndTokenize(model_->Tokenizer(), loader_.ModelTrainingType(),
/*pos=*/0, input);
return QueryModel(prompt);
}
std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel(
const std::vector<std::string>& inputs) {
std::vector<std::unique_ptr<std::vector<int>>> prompts;
prompts.reserve(inputs.size());
for (auto& input : inputs) {
std::string mutable_prompt = input;
prompts.push_back(std::make_unique<std::vector<int>>(
WrapAndTokenize(model_->Tokenizer(),
loader_.ModelTrainingType(),
/*pos=*/0, mutable_prompt)));
}
std::vector<hwy::Span<int>> prompt_vector;
prompt_vector.reserve(prompts.size());
for (auto& prompt : prompts) {
prompt_vector.push_back(hwy::Span<int>(
prompt->data(), prompt->size()));
}
hwy::Span<const hwy::Span<int>> prompt_span = hwy::Span<const hwy::Span<int>>(
prompt_vector.data(), prompt_vector.size());
return BatchQueryModel2(prompt_span);
}
float GemmaEnv::CrossEntropy(const std::string& input) {
std::vector<int> prompt = Tokenize(input);

View File

@ -69,8 +69,12 @@ class GemmaEnv {
// Runs inference on the given input and returns the top-1 result string and
// the number of tokens that were generated.
std::pair<std::string, size_t> QueryModel(const std::vector<int>& tokens);
std::vector<std::pair<std::string, size_t>> BatchQueryModel2(
const hwy::Span<const hwy::Span<int>>& prompts);
// Adds turn structure to input, tokenizes and calls the above overload.
std::pair<std::string, size_t> QueryModel(std::string& input);
std::vector<std::pair<std::string, size_t>> BatchQueryModel(
const std::vector<std::string>& inputs);
// Runs inference on the given input and returns the cross entropy, a measure
// of how well the model predicts the correct output. It is the average
@ -87,7 +91,7 @@ class GemmaEnv {
RuntimeConfig& MutableConfig() { return runtime_config_; }
InferenceArgs& MutableInferenceArgs() { return inference_args_; }
std::mt19937& MutableGen() { return gen_; }
KVCache& MutableKVCache() { return kv_cache_; }
KVCache& MutableKVCache() { return *kv_caches_[0]; }
private:
// Arguments to the model loader: file locations, etc.
@ -103,7 +107,7 @@ class GemmaEnv {
// The model to run inference on.
std::unique_ptr<Gemma> model_;
// The KV cache to use for inference.
KVCache kv_cache_;
std::vector<KVCache*> kv_caches_;
RuntimeConfig runtime_config_;
};

View File

@ -75,23 +75,30 @@ struct Activations {
static constexpr size_t kQStride = kQKVDim * (kIsMHA ? 3 : 1);
std::array<float, kBatchSize * kModelDim> x; // input
std::array<float, kBatchSize * kModelDim> pre_att_rms_out;
std::array<float, kBatchSize * kHeads * kQStride> q; // query vector
std::array<float, kBatchSize * kHeads * kQStride>
q; // query vector
std::array<float, kBatchSize * kHeads * TConfig::kSeqLen>
att; // attention vector
std::array<float, kBatchSize * kHeads * kQKVDim> att_out; // attention output
att; // attention vector
std::array<float, kBatchSize * kHeads * kQKVDim>
att_out; // attention output
std::array<float, kHeads * kBatchSize * kModelDim>
att_post1; // attention output after linear transformation, per head
std::array<float, kBatchSize * kModelDim>
att_post2; // accumulation of attention outputs over heads
std::array<hwy::bfloat16_t, kBatchSize * kModelDim>
bf_pre_ffw_rms_out;
std::array<float, kBatchSize * TConfig::kFFHiddenDim * 2>
ffw_hidden;
std::array<hwy::bfloat16_t, kBatchSize * kModelDim> bf_pre_ffw_rms_out;
std::array<float, kBatchSize * TConfig::kFFHiddenDim * 2> ffw_hidden;
std::array<float, kBatchSize * TConfig::kFFHiddenDim> C1; // MatMul output
// For FFW MatMul.
std::array<float, kBatchSize * TConfig::kFFHiddenDim> C1;
std::array<float, kBatchSize * TConfig::kFFHiddenDim> C2;
std::array<float, kBatchSize * kModelDim> ffw_out;
// bf_ version can't be used until GeluMulToBF16 issue in FFW() is resolved.
// std::array<hwy::bfloat16_t, kBatchSize * 2 * TConfig::kFFHiddenDim>
// bf_ffw_hidden;
std::array<float, kBatchSize * kModelDim> ffw_out;
std::array<float, kBatchSize * TConfig::kVocabSize> logits;
// For bf16/f32 vectors * bf16 matrix: faster to unpack once beforehand, into
@ -104,7 +111,8 @@ struct Activations {
std::array<float, kBatchSize * kGriffinDim> griffin_x;
std::array<float, kBatchSize * kGriffinDim> griffin_y;
std::array<float, kBatchSize * kGriffinDim> griffin_gate_x;
std::array<float, kBatchSize * kGriffinDim> griffin_multiplier;
std::array<float, kBatchSize * kGriffinDim>
griffin_multiplier;
};
namespace {
@ -116,10 +124,12 @@ struct CreateKVCache {
const size_t size_cache_pos = CachePosSize<TConfig>()();
if (size_cache_pos != 0) {
const size_t seq_len = TConfig::kSeqLen + kPrefillBatchSize;
const size_t seq_len =
(TConfig::kSeqLen + kPrefillBatchSize);
kv_cache.kv_cache = hwy::AllocateAligned<float>(seq_len * size_cache_pos);
}
// TODO(patrickms): Add query batching support for Griffin.
if (TConfig::kGriffinLayers) {
constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
const size_t conv1d_cache_size =
@ -226,19 +236,24 @@ namespace gcpp {
namespace HWY_NAMESPACE {
namespace {
template <class TConfig, size_t kBatchSize>
template <class TConfig, size_t kBatchSize, size_t kQueryBatchSize>
HWY_NOINLINE void GriffinRecurrent(
size_t batch_start, size_t num_tokens, size_t layer,
Activations<TConfig, kBatchSize>& activations,
const CompressedLayer<TConfig>* layer_weights, KVCache& kv_cache,
hwy::ThreadPool& pool) {
size_t batch_start, size_t num_tokens, size_t num_queries, size_t layer,
Activations<TConfig, kBatchSize * kQueryBatchSize>& activations,
const CompressedLayer<TConfig>* layer_weights,
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool) {
PROFILER_ZONE("Gen.Griffin");
static_assert(kQueryBatchSize == 1,
"Griffin does not support batched queries.");
HWY_DASSERT(num_queries == 1); // TODO: add batch query support for Griffin.
KVCache& kv_cache = *kv_caches[0];
namespace hn = hwy::HWY_NAMESPACE;
using D = hn::ScalableTag<float>;
HWY_DASSERT(num_tokens <= kBatchSize);
constexpr size_t kModelDim = Activations<TConfig, kBatchSize>::kModelDim;
constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
constexpr size_t kHeads = TConfig::kHeads;
static constexpr size_t kModelDim =
gcpp::Activations<TConfig, kBatchSize * kQueryBatchSize>::kModelDim;
static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
static constexpr size_t kHeads = TConfig::kHeads;
// X / Y linear layers.
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
@ -357,14 +372,19 @@ HWY_NOINLINE void GriffinRecurrent(
}
}
template <class TConfig, size_t kBatchSize>
HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
Activations<TConfig, kBatchSize>& activations,
const CompressedLayer<TConfig>* layer_weights,
KVCache& kv_cache, hwy::ThreadPool& pool) {
template <class TConfig, size_t kBatchSize, size_t kQueryBatchSize>
HWY_NOINLINE void Attention(
size_t batch_and_query_start, size_t num_tokens, size_t num_queries,
size_t layer,
Activations<TConfig, kBatchSize * kQueryBatchSize>& activations,
const CompressedLayer<TConfig>* layer_weights,
const std::vector<KVCache*>& kv_caches,
hwy::ThreadPool& pool) {
PROFILER_ZONE("Gen.Attention");
HWY_DASSERT(num_tokens <= kBatchSize);
using TActivations = Activations<TConfig, kBatchSize>;
HWY_DASSERT(num_queries <= kQueryBatchSize);
HWY_DASSERT(batch_and_query_start % num_queries == 0);
using TActivations = Activations<TConfig, kBatchSize * kQueryBatchSize>;
constexpr size_t kQKVDim = TActivations::kQKVDim;
constexpr size_t kQStride = TActivations::kQStride;
constexpr size_t kCachePosSize = CachePosSize<TConfig>()();
@ -376,15 +396,22 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
GEMMA_CONSTEXPR_SQRT const float kQueryScale =
1.0f / Sqrt(static_cast<float>(kQKVDim));
constexpr bool kIsMHA = TActivations::kIsMHA; // Multi-Head Attention
const size_t batch_start = batch_and_query_start / num_queries;
const size_t num_tokens_and_queries = num_tokens * num_queries;
// If MHA, this also computes KV, which we copy to the KV cache below.
static_assert(!kIsMHA || TConfig::kInterleaveQKV); // MHA => interleaved
MatMul_4x4_Batch<kModelDim, kHeads * kQStride>(
num_tokens, activations.pre_att_rms_out.data(),
num_tokens_and_queries, activations.pre_att_rms_out.data(),
layer_weights->qkv_einsum_w.data(), activations.q.data(), pool);
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
const float* x = activations.pre_att_rms_out.data() + batch_idx * kModelDim;
for (size_t batch_and_query_idx = 0;
batch_and_query_idx < num_tokens_and_queries; ++batch_and_query_idx) {
const float* x = activations.pre_att_rms_out.data() + batch_and_query_idx
* kModelDim;
const size_t query_idx = batch_and_query_idx % num_queries;
const size_t batch_idx = batch_and_query_idx / num_queries;
KVCache& kv_cache = *kv_caches[query_idx];
// QKV projections:
if constexpr (!kIsMHA) {
const size_t pos = batch_start + batch_idx;
@ -401,18 +428,23 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
// Positional encodings for kv:
pool.Run(
0, kKVHeads * num_tokens, [&](uint64_t task, size_t thread) HWY_ATTR {
0, kKVHeads * num_tokens_and_queries,
[&](uint64_t task, size_t thread) HWY_ATTR {
const size_t head = task % kKVHeads;
const size_t batch_idx = task / kKVHeads;
const size_t batch_and_query_idx = task / kKVHeads;
const size_t query_idx = batch_and_query_idx % num_queries;
const size_t batch_idx = batch_and_query_idx / num_queries;
const size_t pos = batch_start + batch_idx;
const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize);
const size_t kv_offset = cache_pos * kCachePosSize +
layer * kCacheLayerSize + head * kQKVDim * 2;
KVCache& kv_cache = *kv_caches[query_idx];
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset;
if constexpr (kIsMHA) {
// For MHA, copy kv into the KV cache from scratch space (see above).
const float* HWY_RESTRICT q =
activations.q.data() + (batch_idx * kHeads + head) * kQStride;
activations.q.data() + (batch_and_query_idx * kHeads
+ head) * kQStride;
// Skip past the Q part of `q`, and copy KV to `kv`.
memcpy(kv, q + kQKVDim, 2 * kQKVDim * sizeof(float));
}
@ -422,17 +454,22 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
static_assert((kHeads % kKVHeads) == 0,
"query heads must be a multiple of key-value heads");
constexpr size_t kGroupHeads = kHeads / kKVHeads;
pool.Run(0, kHeads * num_tokens, [&](uint64_t task, size_t thread) HWY_ATTR {
pool.Run(0, kHeads * num_tokens_and_queries,
[&](uint64_t task, size_t thread) HWY_ATTR {
const size_t head = task % kHeads;
const size_t batch_idx = task / kHeads;
const size_t batch_and_query_idx = task / kHeads;
const size_t query_idx = batch_and_query_idx % num_queries;
const size_t batch_idx = batch_and_query_idx / num_queries;
const size_t head_offset = (head / kGroupHeads) * kQKVDim * 2;
KVCache& kv_cache = *kv_caches[query_idx];
float* HWY_RESTRICT q =
activations.q.data() + (batch_idx * kHeads + head) * kQStride;
activations.q.data() + (batch_and_query_idx * kHeads + head) * kQStride;
const size_t pos = batch_start + batch_idx;
// Calculate scores
float* HWY_RESTRICT head_att =
activations.att.data() + head * kSeqLen + batch_idx * kHeads * kSeqLen;
activations.att.data() + head * kSeqLen
+ batch_and_query_idx * kHeads * kSeqLen;
Rope(q, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
MulByConst(kQueryScale, q, kQKVDim);
@ -451,7 +488,7 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
// Weighted summation
float* HWY_RESTRICT att_out = activations.att_out.data() + head * kQKVDim +
batch_idx * kHeads * kQKVDim;
batch_and_query_idx * kHeads * kQKVDim;
hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out));
for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) {
const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize);
@ -462,20 +499,23 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
}
});
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
for (size_t batch_and_query_idx = 0;
batch_and_query_idx < num_tokens_and_queries; ++batch_and_query_idx) {
// TODO(szabadka) Use a single MatVecAdd like in GriffinRecurrent() after
// rearranging the weights.
float* HWY_RESTRICT att_out =
activations.att_out.data() + batch_idx * kHeads * kQKVDim;
activations.att_out.data() + batch_and_query_idx * kHeads * kQKVDim;
float* HWY_RESTRICT layer_out =
activations.att_post2.data() + batch_idx * kModelDim;
activations.att_post2.data() + batch_and_query_idx * kModelDim;
MatVecT</*kAdd=*/TConfig::kSoftmaxAttnOutputBiases, kModelDim, kQKVDim>(
layer_weights->attn_vec_einsum_w, 0, att_out,
layer_weights->attention_output_biases.data(),
activations.even_odd.data(), layer_out, pool);
for (size_t head = 1; head < kHeads; ++head) {
// TODO(patrickms): Check this calculation
float* HWY_RESTRICT head_out =
activations.att_post1.data() + head * kBatchSize * kModelDim;
activations.att_post1.data() +
head * kBatchSize * kQueryBatchSize * kModelDim;
// TODO: requires MatMul support for offsets.
MatVec<kModelDim, kQKVDim>(
layer_weights->attn_vec_einsum_w, head * kModelDim * kQKVDim,
@ -583,103 +623,138 @@ HWY_NOINLINE void EmbedToken(int token, size_t token_idx, size_t pos,
};
}
template <class TConfig, size_t kBatchSize>
template <class TConfig, size_t kBatchSize, size_t kQueryBatchSize>
HWY_NOINLINE void TransformerLayer(
size_t num_tokens, size_t pos, size_t layer,
size_t num_tokens, size_t num_queries, size_t pos, size_t layer,
const CompressedLayer<TConfig>* layer_weights,
Activations<TConfig, kBatchSize>& activations, KVCache& kv_cache,
hwy::ThreadPool& pool) {
Activations<TConfig, kBatchSize * kQueryBatchSize>& activations,
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool) {
constexpr size_t kModelDim = TConfig::kModelDim;
const size_t num_tokens_and_queries = num_tokens * num_queries;
auto type = TConfig::kLayerConfig[layer];
size_t layer_of_type =
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
RMSNormBatched<kBatchSize * kQueryBatchSize>(
num_tokens_and_queries, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
if (type == LayerAttentionType::kGemma) {
Attention(pos, num_tokens, layer_of_type, activations, layer_weights,
kv_cache, pool);
Attention<TConfig, kBatchSize, kQueryBatchSize>(
pos, num_tokens, num_queries, layer_of_type, activations,
layer_weights, kv_caches, pool);
} else {
GriffinRecurrent(pos, num_tokens, layer_of_type, activations, layer_weights,
kv_cache, pool);
// This Griffin layers should never exist unless the model is a Griffin
// model. This conditional prevents the compiler from generating code for
// this branch when building a non-Griffin model, since we have static
// asserts about the query batch size for Griffin layers.
if constexpr (TConfig::kGriffinLayers > 0) {
GriffinRecurrent<TConfig, kBatchSize, kQueryBatchSize>(
pos, num_tokens, num_queries, layer_of_type, activations,
layer_weights, kv_caches, pool);
}
}
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_attention_norm_scale.data(),
RMSNormInplaceBatched<kBatchSize * kQueryBatchSize>(
num_tokens_and_queries,
layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.att_post2.data(),
activations.x.data(), kModelDim);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(), kModelDim);
FFW(activations, num_tokens, layer_weights, pool);
AddFromBatched<kBatchSize * kQueryBatchSize>(num_tokens_and_queries,
activations.att_post2.data(),
activations.x.data(), kModelDim);
RMSNormBatched<kBatchSize * kQueryBatchSize>(
num_tokens_and_queries, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(), kModelDim);
FFW<TConfig, kBatchSize * kQueryBatchSize>(
activations, num_tokens_and_queries, layer_weights, pool);
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(num_tokens,
layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
RMSNormInplaceBatched<kBatchSize * kQueryBatchSize>(
num_tokens_and_queries, layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.ffw_out.data(),
activations.x.data(), kModelDim);
AddFromBatched<kBatchSize * kQueryBatchSize>(
num_tokens_and_queries, activations.ffw_out.data(),
activations.x.data(), kModelDim);
}
template <class TConfig, size_t kBatchSize>
HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
const CompressedWeights<TConfig>& weights,
Activations<TConfig, kBatchSize>& activations,
KVCache& kv_cache, hwy::ThreadPool& pool) {
template <class TConfig, size_t kBatchSize, size_t kQueryBatchSize>
HWY_NOINLINE void Prefill(
const int* tokens, size_t num_tokens, size_t num_queries, size_t pos,
const CompressedWeights<TConfig>& weights,
Activations<TConfig, kBatchSize * kQueryBatchSize>& activations,
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool) {
HWY_DASSERT(num_queries <= kQueryBatchSize);
const size_t minibatch_size = std::min(num_tokens, kBatchSize);
PROFILER_ZONE("Gen.Prefill\\Att\\FFW");
// TODO(patrickms): Try to hoist pool.Run out of the loop.
for (size_t i = 0; i < num_tokens; i += minibatch_size) {
const size_t offset = i * num_queries;
const size_t current_token_count = std::min(
minibatch_size, num_tokens - i);
pool.Run(0, current_token_count * num_queries,
[&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
EmbedToken<TConfig, kBatchSize * kQueryBatchSize>(
tokens[token_idx + offset], token_idx, pos + offset,
weights, activations);
});
pool.Run(
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
EmbedToken(tokens[token_idx], token_idx, pos, weights, activations);
});
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
const auto* layer_weights = weights.GetLayer(layer);
TransformerLayer(num_tokens, pos, layer, layer_weights, activations,
kv_cache, pool);
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
const auto* layer_weights = weights.GetLayer(layer);
TransformerLayer<TConfig, kBatchSize, kQueryBatchSize>(
current_token_count, num_queries, pos + offset , layer, layer_weights,
activations, kv_caches, pool);
}
}
}
// Compute the transformer for a batch of input tokens. During generation,
// we usually have num_tokens == 1 (and also kBatchSize == 1).
template <class TConfig, size_t kBatchSize>
HWY_NOINLINE void Transformer(const int* tokens, size_t num_tokens, size_t pos,
const CompressedWeights<TConfig>& weights,
Activations<TConfig, kBatchSize>& activations,
KVCache& kv_cache, hwy::ThreadPool& pool,
const LayersOutputFunc& layers_output) {
template <class TConfig, size_t kBatchSize, size_t kQueryBatchSize>
HWY_NOINLINE void Transformer(
const int* tokens, size_t num_tokens, size_t num_queries, size_t pos,
const CompressedWeights<TConfig>& weights,
Activations<TConfig, kBatchSize * kQueryBatchSize>& activations,
const std::vector<KVCache*>& kv_caches,
hwy::ThreadPool& pool,
const LayersOutputFunc& layers_output) {
HWY_ASSERT(num_tokens <= kBatchSize);
const size_t num_tokens_and_queries = num_tokens * num_queries;
if (layers_output) {
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (size_t token_idx = 0; token_idx < num_tokens_and_queries;
++token_idx) {
float token_f = tokens[token_idx];
layers_output(pos + token_idx, "Tokens", &token_f, 1);
}
}
constexpr size_t kModelDim = TConfig::kModelDim;
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
EmbedToken(tokens[token_idx], token_idx, pos, weights, activations);
for (size_t token_idx = 0; token_idx < num_tokens_and_queries; ++token_idx) {
EmbedToken<TConfig, kBatchSize * kQueryBatchSize>(
tokens[token_idx], token_idx, pos, weights, activations);
}
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
const CompressedLayer<TConfig>* layer_weights = weights.GetLayer(layer);
TransformerLayer(num_tokens, pos, layer, layer_weights, activations,
kv_cache, pool);
TransformerLayer<TConfig, kBatchSize, kQueryBatchSize>(
num_tokens, num_queries, pos, layer, layer_weights,
activations, kv_caches, pool);
if (layers_output) {
const std::string block_name = "blocks." + std::to_string(layer);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (size_t token_idx = 0; token_idx < num_tokens_and_queries;
++token_idx) {
layers_output(pos + token_idx, block_name,
activations.x.data() + token_idx * kModelDim, kModelDim);
}
}
}
RMSNormInplaceBatched<kBatchSize>(num_tokens, weights.final_norm_scale.data(),
activations.x.data(), kModelDim);
RMSNormInplaceBatched<kBatchSize * kQueryBatchSize>(
num_tokens * num_queries, weights.final_norm_scale.data(),
activations.x.data(), kModelDim);
if (layers_output) {
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
for (size_t token_idx = 0; token_idx < num_tokens_and_queries;
++token_idx) {
layers_output(pos + token_idx, "final_norm",
activations.x.data() + token_idx * kModelDim, kModelDim);
}
@ -719,31 +794,69 @@ void RangeChecks(size_t& max_tokens, size_t& max_generated_tokens,
}
template <class TConfig, size_t kBatchSize>
Activations<TConfig, kBatchSize>& GetActivations(const ByteStorageT& state_u8) {
return *reinterpret_cast<Activations<TConfig, kBatchSize>*>(state_u8.get());
Activations<TConfig, kBatchSize>& GetActivations(
const ByteStorageT& state_u8) {
return *reinterpret_cast<Activations<TConfig, kBatchSize>*>(
state_u8.get());
}
} // namespace
// Placeholder for internal test3, do not remove
template <class TConfig>
bool StreamToken(size_t query_idx, size_t pos, int token, float weight,
const RuntimeConfig& runtime_config) {
if (runtime_config.batch_stream_token) {
return runtime_config.batch_stream_token(query_idx, pos, token, weight);
}
return runtime_config.stream_token(token, weight);
}
template <class TConfig, size_t kQueryBatchSize>
void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
const ByteStorageT& decode_u8,
const RuntimeConfig& runtime_config,
const std::vector<int>& prompt, size_t pos, KVCache& kv_cache,
hwy::ThreadPool& pool, TimingInfo& timing_info) {
const hwy::Span<const hwy::Span<int>>& prompts, size_t pos,
const size_t query_index_offset,
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool,
TimingInfo& timing_info) {
constexpr size_t kAdjustedPrefillBatchSize =
std::max((size_t)1, kPrefillBatchSize / kQueryBatchSize);
static_assert(kAdjustedPrefillBatchSize >= kMinAdjustedPrefillBatchSize);
const size_t num_queries = prompts.size();
HWY_DASSERT(num_queries <= kQueryBatchSize);
pos *= num_queries; // position in (num_queries) interleaved token sequence.
const CompressedWeights<TConfig>& weights =
*reinterpret_cast<const CompressedWeights<TConfig>*>(weights_u8.get());
auto& prefill_activations =
GetActivations<TConfig, kPrefillBatchSize>(prefill_u8);
auto& activations = GetActivations<TConfig, 1>(decode_u8);
GetActivations<TConfig,
kAdjustedPrefillBatchSize * kQueryBatchSize>(prefill_u8);
auto& activations = GetActivations<TConfig, kQueryBatchSize>(decode_u8);
size_t min_prompt_size = (size_t)-1;
size_t max_prompt_size = 0;
for (int i=0; i < prompts.size(); ++i) {
min_prompt_size = std::min(min_prompt_size, prompts[i].size());
max_prompt_size = std::max(max_prompt_size, prompts[i].size());
}
std::vector<int> prompt;
prompt.reserve(max_prompt_size * prompts.size());
for (int i = 0; i < max_prompt_size; ++i) {
for (int j=0; j < prompts.size(); ++j) {
if (i < prompts[j].size()) {
prompt.push_back(prompts[j][i]);
} else {
prompt.push_back(0);
}
}
}
constexpr size_t kVocabSize = TConfig::kVocabSize;
size_t prompt_size = prompt.size();
size_t max_tokens = runtime_config.max_tokens;
size_t max_generated_tokens = runtime_config.max_generated_tokens;
RangeChecks<TConfig>(max_tokens, max_generated_tokens, prompt_size);
RangeChecks<TConfig>(max_tokens, max_generated_tokens, max_prompt_size);
if (pos >= max_tokens) {
fprintf(stderr, "Warning: pos %zu >= max_tokens %zu, aborting.\n", pos,
max_tokens);
@ -760,6 +873,9 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
runtime_config.accept_token);
};
std::vector<bool> reached_eos(num_queries);
std::fill(reached_eos.begin(), reached_eos.end(), false);
// pos indexes the KV cache. In the first turn of a chat, pos = 0.
//
// After the first turn, pos gets passed in with > 0 corresponding to the
@ -772,23 +888,44 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
// In single-turn (non-chat) usage, pos and pos_offset start at 0 and are
// always equal.
size_t pos_offset = 0; // offset relative to pos
// Used to keep track of how many tokens are processed per prompt,
// so that we know when to start generating tokens.
size_t single_prompt_pos_offset = 0;
const double prefill_start = hwy::platform::Now();
// Prefill stops before prompt_size - 1 since the last prompt token is the
// first input token for generation.
while (pos_offset < prompt_size - 1) {
const size_t batch_size =
std::min(kPrefillBatchSize, prompt_size - 1 - pos_offset);
while (single_prompt_pos_offset < min_prompt_size - 1) {
const size_t batch_size = std::min(
kPrefillBatchSize, min_prompt_size - 1 - single_prompt_pos_offset);
const size_t batch_and_query_size = batch_size * num_queries;
HWY_DASSERT(batch_size <= kPrefillBatchSize);
HWY_DASSERT(pos_offset + batch_size <= prompt_size - 1);
HWY_DASSERT(single_prompt_pos_offset + batch_size <= min_prompt_size - 1);
HWY_DASSERT(pos_offset + batch_size <= (min_prompt_size - 1) * num_queries);
const int* batch_tokens = prompt.data() + pos_offset;
Prefill(batch_tokens, batch_size, pos, weights, prefill_activations,
kv_cache, pool);
Prefill<TConfig, kAdjustedPrefillBatchSize, kQueryBatchSize>(
batch_tokens, batch_size, num_queries, pos, weights,
prefill_activations, kv_caches, pool);
for (size_t idx = 0; idx < batch_size; ++idx) {
if (!runtime_config.stream_token(batch_tokens[idx], 0.0f)) return;
bool all_tokens_eos = true;
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
if (reached_eos[query_idx]) continue;
if (StreamToken(
query_idx + query_index_offset, single_prompt_pos_offset,
batch_tokens[idx * num_queries + query_idx], 0.0f,
runtime_config)) {
all_tokens_eos = false;
} else {
reached_eos[query_idx] = true;
}
}
if (all_tokens_eos) {
return;
}
}
pos += batch_size;
pos_offset += batch_size;
pos += batch_and_query_size;
pos_offset += batch_and_query_size;
single_prompt_pos_offset += batch_size;
}
timing_info.prefill_tok_sec =
@ -796,45 +933,81 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
// Start generation.
const double gen_start = hwy::platform::Now();
HWY_DASSERT(pos_offset == prompt_size - 1);
HWY_DASSERT(single_prompt_pos_offset == min_prompt_size - 1);
size_t pos_gen_start = pos_offset;
int token = prompt.at(pos_offset);
// The loop below is not yet prepared for batch size > 1.
std::vector<int>::const_iterator first = prompt.begin() + pos_offset;
std::vector<int>::const_iterator last = first + num_queries;
std::vector<int> gen_tokens(first, last);
// The loop below is not yet prepared for decode batch size > 1.
HWY_ASSERT(kDecodeBatchSize == 1);
if (!runtime_config.stream_token(token, 0.0f)) return;
bool all_tokens_eos = true;
for (size_t i=0; i < num_queries; ++i) {
if (reached_eos[i]) continue;
if (StreamToken(i + query_index_offset,
single_prompt_pos_offset, gen_tokens[i], 0.0f,
runtime_config)) {
all_tokens_eos = false;
} else {
reached_eos[i] = true;
}
}
if (all_tokens_eos) {
return;
}
for (size_t generate_pos = 0;
pos < max_tokens && generate_pos < max_generated_tokens;
++pos, ++pos_offset, ++generate_pos) {
Transformer(&token, kDecodeBatchSize, pos, weights, activations, kv_cache,
pool, runtime_config.layers_output);
generate_pos < max_tokens && generate_pos < max_generated_tokens;
++single_prompt_pos_offset, ++generate_pos) {
Transformer<TConfig, kDecodeBatchSize, kQueryBatchSize>(
gen_tokens.data(), kDecodeBatchSize, num_queries, pos, weights,
activations, kv_caches, pool, runtime_config.layers_output);
float token_logit = 0.0f;
// The condition below is always true if we are doing Prefill above.
// We keep it here for clarity so that the code is correct even if Prefill
// is disabled.
const bool is_generating_phase = pos_offset >= prompt_size - 1;
if (is_generating_phase) {
PROFILER_ZONE("Gen.Embedding");
// Compute logits from last layer activations.
MatVec<kVocabSize, TConfig::kModelDim>(
weights.embedder_input_embedding, 0, activations.x.data(),
activations.even_odd.data(), activations.logits.data(), pool);
LogitsSoftCap(30.0f, activations.logits.data(), kVocabSize);
// Barrier: must have all logits so we can subtract max.
Softmax(activations.logits.data(), kVocabSize);
token = sample_token(activations.logits.data(), kVocabSize);
token_logit = activations.logits[token];
if (generate_pos == 0) {
timing_info.time_to_first_token = hwy::platform::Now() - gen_start;
bool all_tokens_eos = true;
float* x = activations.x.data();
float* logits = activations.logits.data();
for (size_t i = 0; i < num_queries; ++i, ++pos, ++pos_offset,
x += TConfig::kModelDim, logits += kVocabSize) {
const size_t prompt_size = prompts[i].size();
const bool is_generating_phase =
(single_prompt_pos_offset >= prompt_size - 1);
if (is_generating_phase) {
PROFILER_ZONE("Gen.Embedding");
// Compute logits from last layer activations.
MatVec<kVocabSize, TConfig::kModelDim>(
weights.embedder_input_embedding, 0, x, activations.even_odd.data(),
logits, pool);
LogitsSoftCap(30.0f, logits, kVocabSize);
// Barrier: must have all logits so we can subtract max.
Softmax(logits, kVocabSize);
token = sample_token(logits, kVocabSize);
token_logit = logits[token];
if (generate_pos == 0) {
timing_info.time_to_first_token = hwy::platform::Now() - gen_start;
}
} else {
// We would take this branch if we were not doing Prefill but would
// process the tokens of the prompt one at a time.
token = prompt.at(pos_offset);
token_logit = 0.0f;
}
} else {
// We would take this branch if we were not doing Prefill but would
// process the tokens of the prompt one at a time.
token = prompt.at(pos_offset + 1);
if (!reached_eos[i]) {
if (!StreamToken(i + query_index_offset, single_prompt_pos_offset+1,
token, token_logit, runtime_config)) {
token = runtime_config.eos_id;
}
if (token != runtime_config.eos_id) {
all_tokens_eos = false;
} else {
reached_eos[i] = true;
}
}
gen_tokens[i] = token;
}
if (!runtime_config.stream_token(token, token_logit)) {
token = runtime_config.eos_id;
}
if (token == runtime_config.eos_id) {
if (all_tokens_eos) {
break;
}
}
@ -842,6 +1015,46 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
(hwy::platform::Now() - gen_start);
}
template <class TConfig>
void GenerateOneQueryT(const ByteStorageT& weights_u8,
const ByteStorageT& prefill_u8,
const ByteStorageT& decode_u8,
const RuntimeConfig& runtime_config,
const std::vector<int>& prompt, size_t pos,
KVCache& kv_cache, hwy::ThreadPool& pool,
TimingInfo& timing_info) {
std::vector<hwy::Span<int>> prompt_vector = {
hwy::Span<int>(const_cast<int*>(prompt.data()), prompt.size())};
const hwy::Span<const hwy::Span<int>> prompts(
prompt_vector.data(), prompt_vector.size());
std::vector<KVCache*> kv_caches = {&kv_cache};
GenerateT<TConfig, 1>(weights_u8, prefill_u8, decode_u8,
runtime_config, prompts, pos, 0,
kv_caches, pool, timing_info);
}
template <class TConfig>
void GenerateBatchT(const ByteStorageT& weights_u8,
const ByteStorageT& prefill_u8,
const ByteStorageT& decode_u8,
const RuntimeConfig& runtime_config,
const hwy::Span<const hwy::Span<int>>& prompts,
size_t pos, const std::vector<KVCache*>& kv_caches,
hwy::ThreadPool& pool,
TimingInfo& timing_info) {
// Disable query batching for Griffin models.
constexpr size_t kQueryBatchSize =
(TConfig::kGriffinLayers > 0) ? 1 : kBatchedQueryBatchSize;
for (size_t i = 0; i < prompts.size(); i += kQueryBatchSize) {
const size_t num_queries = std::min(prompts.size() - i, kQueryBatchSize);
const hwy::Span<const hwy::Span<int>> current_prompts(
prompts.data() + i, num_queries);
GenerateT<TConfig, kQueryBatchSize>(weights_u8, prefill_u8, decode_u8,
runtime_config, current_prompts,
pos, i, kv_caches, pool, timing_info);
}
}
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
@ -853,8 +1066,13 @@ namespace {
template <typename TConfig>
struct AllocateState {
void operator()(ByteStorageT& prefill, ByteStorageT& decode) const {
prefill = AllocateSizeof<Activations<TConfig, kPrefillBatchSize>>();
decode = AllocateSizeof<Activations<TConfig, kDecodeBatchSize>>();
// When batching queries, the prefill batch size is reduced by a factor
// of kBatchedQueryBatchSize
prefill = AllocateSizeof<
Activations<TConfig,
kMinAdjustedPrefillBatchSize * kBatchedQueryBatchSize>>();
decode = AllocateSizeof<
Activations<TConfig, kDecodeBatchSize * kBatchedQueryBatchSize>>();
}
};
@ -895,13 +1113,28 @@ void Gemma::Generate(const RuntimeConfig& runtime_config,
pool_.SetWaitMode(hwy::PoolWaitMode::kSpin);
GEMMA_EXPORT_AND_DISPATCH(
model_type_, weight_type_, GenerateT,
model_type_, weight_type_, GenerateOneQueryT,
(weights_u8_, prefill_u8_, decode_u8_, runtime_config, prompt, start_pos,
kv_cache, pool_, timing_info));
pool_.SetWaitMode(hwy::PoolWaitMode::kBlock);
}
void Gemma::GenerateBatch(const RuntimeConfig& runtime_config,
const hwy::Span<const hwy::Span<int>>& prompts,
size_t start_pos,
const std::vector<KVCache*>& kv_caches,
TimingInfo& timing_info) {
pool_.SetWaitMode(hwy::PoolWaitMode::kSpin);
GEMMA_EXPORT_AND_DISPATCH(
model_type_, weight_type_, GenerateBatchT,
(weights_u8_, prefill_u8_, decode_u8_, runtime_config, prompts, start_pos,
kv_caches, pool_, timing_info));
pool_.SetWaitMode(hwy::PoolWaitMode::kBlock);
}
std::vector<int> WrapAndTokenize(const GemmaTokenizer& tokenizer,
const ModelTraining training, size_t pos,
std::string& prompt) {

View File

@ -32,6 +32,9 @@ namespace gcpp {
constexpr size_t kPrefillBatchSize = 16;
constexpr size_t kDecodeBatchSize = 1;
constexpr size_t kBatchedQueryBatchSize = 16;
constexpr size_t kMinAdjustedPrefillBatchSize =
HWY_MAX((size_t)1, kPrefillBatchSize / kBatchedQueryBatchSize);
constexpr bool kSystemPrompt = false;
struct KVCache {
@ -72,6 +75,11 @@ class GemmaTokenizer {
// probability is 0.0f. StreamFunc should return false to stop generation and
// true to continue generation.
using StreamFunc = std::function<bool(int, float)>;
// BatchStreamFunc is called with (query_idx, pos, token, probability).
// For prompt tokens,
// probability is 0.0f. StreamFunc should return false to stop generation and
// true to continue generation.
using BatchStreamFunc = std::function<bool(size_t, size_t, int, float)>;
// If not empty, AcceptFunc is called with token. It should return false for
// tokens you don't want to generate and true for tokens you want to generate.
using AcceptFunc = std::function<bool(int, float)>;
@ -93,6 +101,7 @@ struct RuntimeConfig {
int verbosity;
std::mt19937* gen;
StreamFunc stream_token;
BatchStreamFunc batch_stream_token;
AcceptFunc accept_token; // if empty, accepts all tokens.
SampleFunc sample_func; // if empty, uses SampleTopK.
LayersOutputFunc layers_output; // if not empty, called after each layer.
@ -125,6 +134,11 @@ class Gemma {
const std::vector<int>& prompt, size_t start_pos,
KVCache& kv_cache, TimingInfo& timing_info);
void GenerateBatch(const RuntimeConfig& runtime_config,
const hwy::Span<const hwy::Span<int>>& prompts,
size_t start_pos, const std::vector<KVCache*>& kv_caches,
TimingInfo& timing_info);
private:
hwy::ThreadPool& pool_;

View File

@ -17,9 +17,11 @@
#include <stdio.h>
#include <memory>
#include <string>
#include <vector>
#include "hwy/aligned_allocator.h"
#include "gemma/benchmark_helper.h"
#include "gemma/common.h"
#include "hwy/tests/hwy_gtest.h"
@ -44,13 +46,55 @@ class GemmaTest : public ::testing::Test {
return response;
}
void TestQuestions(const char* kQA[][2], size_t num_questions) {
std::vector<std::string> BatchGemmaReply(
const std::vector<std::string>& inputs) {
s_env->SetMaxGeneratedTokens(64);
s_env->MutableConfig().temperature = 0.0f; // deterministic
s_env->MutableConfig().verbosity = 0;
// Using the turn structure worsens results.
std::vector<std::unique_ptr<std::vector<int>>> prompts;
prompts.reserve(inputs.size());
for (auto input_string : inputs) {
std::string mutable_input_string = input_string;
prompts.push_back(std::make_unique<std::vector<int>>(
s_env->TokenizeAndPrependBOS(input_string)));
}
std::vector<hwy::Span<int>> prompt_vector;
for (auto& prompt : prompts) {
prompt_vector.push_back(hwy::Span<int>(
prompt->data(), prompt->size()));
}
hwy::Span<const hwy::Span<int>> prompt_span =
hwy::Span<const hwy::Span<int>>(
prompt_vector.data(), prompt_vector.size());
std::vector<std::string> replies;
for (auto [response, n] : s_env->BatchQueryModel2(prompt_span)) {
replies.push_back(response);
}
return replies;
}
void TestQuestions(const char* kQA[][2], size_t num_questions, bool batch) {
if (!s_env->GetModel()) return;
for (size_t i = 0; i < num_questions; ++i) {
fprintf(stderr, "Question %zu\n\n", i + 1);
std::string response = GemmaReply(kQA[i][0]);
fprintf(stderr, "'%s'\n\n", response.c_str());
EXPECT_TRUE(response.find(kQA[i][1]) != std::string::npos); // NOLINT
if (batch) {
std::vector<std::string> inputs;
for (size_t i = 0; i < num_questions; ++i) {
fprintf(stderr, "Batch Question %zu\n\n", i + 1);
inputs.push_back(kQA[i][0]);
}
std::vector<std::string> responses = BatchGemmaReply(inputs);
for (size_t i = 0; i < num_questions; ++i) {
std::string response = responses.at(i);
fprintf(stderr, "Batch answer %zu '%s'\n\n", i + 1, response.c_str());
EXPECT_TRUE(response.find(kQA[i][1]) != std::string::npos); // NOLINT
}
} else {
for (size_t i = 0; i < num_questions; ++i) {
fprintf(stderr, "Question %zu\n\n", i + 1);
std::string response = GemmaReply(kQA[i][0]);
fprintf(stderr, "'%s'\n\n", response.c_str());
EXPECT_TRUE(response.find(kQA[i][1]) != std::string::npos); // NOLINT
}
}
}
};
@ -58,10 +102,16 @@ class GemmaTest : public ::testing::Test {
TEST_F(GemmaTest, Geography) {
static const char* kQA[][2] = {
{"What is the capital of Hungary?", "Budapest"},
{"What is the capital of Australia?", "Canberra"},
{"How many states does the US have?", "50"},
};
static const size_t kNum = sizeof(kQA) / sizeof(kQA[0]);
TestQuestions(kQA, kNum);
TestQuestions(kQA, kNum, /* batch= */ false);
static const char* kQA_single_question[][2] = {
{"What is the capital of Australia?", "Canberra"},
};
TestQuestions(kQA_single_question, 1, /* batch= */ true);
TestQuestions(kQA, kNum, /* batch= */ true);
}
TEST_F(GemmaTest, History) {
@ -69,7 +119,7 @@ TEST_F(GemmaTest, History) {
{"When was the battle of Hastings?", "1066"},
};
static const size_t kNum = sizeof(kQA) / sizeof(kQA[0]);
TestQuestions(kQA, kNum);
TestQuestions(kQA, kNum, /* batch= */ false);
}
TEST_F(GemmaTest, Arithmetic) {
@ -78,7 +128,7 @@ TEST_F(GemmaTest, Arithmetic) {
{"what is 7 * 8?", "56"},
};
static const size_t kNum = sizeof(kQA) / sizeof(kQA[0]);
TestQuestions(kQA, kNum);
TestQuestions(kQA, kNum, /* batch= */ false);
}
static const char kJingleBells[] = R"(
@ -152,4 +202,4 @@ int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
}