Unrolled / tiled 4x4 MatMul

PiperOrigin-RevId: 638384686
This commit is contained in:
Phil Culliton 2024-05-29 13:01:58 -07:00 committed by Copybara-Service
parent 419dc34ed5
commit c616abe628
2 changed files with 250 additions and 13 deletions

View File

@ -22,6 +22,7 @@
#include <array>
#include <cmath>
#include <cstdio>
#include <random>
#include <type_traits> // std::enable_if_t
@ -93,11 +94,179 @@ HWY_INLINE constexpr size_t RowsPerStrip() {
return kRowsPerStrip;
}
// Processes a single 4x4 tile of A x B. Shared between static and dynamic
// versions.
template <typename MatT, size_t kColsA>
HWY_INLINE void GEMM_4x4_Tile(const MatT* HWY_RESTRICT A,
const MatT* HWY_RESTRICT B, MatT* HWY_RESTRICT C,
size_t tile_num, const int xtiles, const int lda,
const int ldb, const int ldc) {
constexpr int RM = 4;
constexpr int RN = 4;
// Calculate chunk start coords.
int ii = tile_num / xtiles * RM;
int jj = tile_num % xtiles * RN;
const hn::ScalableTag<MatT> d;
const size_t N = Lanes(d);
using V = hn::Vec<decltype(d)>;
V c00 = hn::Zero(d);
V c01 = hn::Zero(d);
V c02 = hn::Zero(d);
V c03 = hn::Zero(d);
V c10 = hn::Zero(d);
V c11 = hn::Zero(d);
V c12 = hn::Zero(d);
V c13 = hn::Zero(d);
V c20 = hn::Zero(d);
V c21 = hn::Zero(d);
V c22 = hn::Zero(d);
V c23 = hn::Zero(d);
V c30 = hn::Zero(d);
V c31 = hn::Zero(d);
V c32 = hn::Zero(d);
V c33 = hn::Zero(d);
// Steps down the rows of A and B, and across width (kN) in steps of
// N (Lanes()). Accumulates into the cache vectors. hn::ReduceSum() is
// called on each of the cache vectors to sum the partial sums into C.
for (size_t l = 0; l < kColsA; l += N) {
V k0 = hn::LoadU(d, B + ldb * (jj + 0) + l);
V k1 = hn::LoadU(d, B + ldb * (jj + 1) + l);
V k2 = hn::LoadU(d, B + ldb * (jj + 2) + l);
V k3 = hn::LoadU(d, B + ldb * (jj + 3) + l);
V a0 = hn::LoadU(d, A + lda * (ii + 0) + l);
c00 = hn::MulAdd(a0, k0, c00);
c01 = hn::MulAdd(a0, k1, c01);
c02 = hn::MulAdd(a0, k2, c02);
c03 = hn::MulAdd(a0, k3, c03);
V a1 = hn::LoadU(d, A + lda * (ii + 1) + l);
c10 = hn::MulAdd(a1, k0, c10);
c11 = hn::MulAdd(a1, k1, c11);
c12 = hn::MulAdd(a1, k2, c12);
c13 = hn::MulAdd(a1, k3, c13);
V a2 = hn::LoadU(d, A + lda * (ii + 2) + l);
c20 = hn::MulAdd(a2, k0, c20);
c21 = hn::MulAdd(a2, k1, c21);
c22 = hn::MulAdd(a2, k2, c22);
c23 = hn::MulAdd(a2, k3, c23);
V a3 = hn::LoadU(d, A + lda * (ii + 3) + l);
c30 = hn::MulAdd(a3, k0, c30);
c31 = hn::MulAdd(a3, k1, c31);
c32 = hn::MulAdd(a3, k2, c32);
c33 = hn::MulAdd(a3, k3, c33);
}
C[ldc * (ii + 0) + (jj + 0)] = hn::ReduceSum(d, c00);
C[ldc * (ii + 0) + (jj + 1)] = hn::ReduceSum(d, c01);
C[ldc * (ii + 0) + (jj + 2)] = hn::ReduceSum(d, c02);
C[ldc * (ii + 0) + (jj + 3)] = hn::ReduceSum(d, c03);
C[ldc * (ii + 1) + (jj + 0)] = hn::ReduceSum(d, c10);
C[ldc * (ii + 1) + (jj + 1)] = hn::ReduceSum(d, c11);
C[ldc * (ii + 1) + (jj + 2)] = hn::ReduceSum(d, c12);
C[ldc * (ii + 1) + (jj + 3)] = hn::ReduceSum(d, c13);
C[ldc * (ii + 2) + (jj + 0)] = hn::ReduceSum(d, c20);
C[ldc * (ii + 2) + (jj + 1)] = hn::ReduceSum(d, c21);
C[ldc * (ii + 2) + (jj + 2)] = hn::ReduceSum(d, c22);
C[ldc * (ii + 2) + (jj + 3)] = hn::ReduceSum(d, c23);
C[ldc * (ii + 3) + (jj + 0)] = hn::ReduceSum(d, c30);
C[ldc * (ii + 3) + (jj + 1)] = hn::ReduceSum(d, c31);
C[ldc * (ii + 3) + (jj + 2)] = hn::ReduceSum(d, c32);
C[ldc * (ii + 3) + (jj + 3)] = hn::ReduceSum(d, c33);
}
// Tiled 4x4 GEMM. Covers primary M =4..512, k = 3k/24k, n = 24k/3k use case.
// This version uses tiling suitable for static scheduling.
// Note: expects transposed / shuffled B.
template <size_t kM, size_t kColsA, size_t kK, typename MatT>
void GEMM_4x4_Static(const MatT* HWY_RESTRICT A, const MatT* HWY_RESTRICT B,
MatT* HWY_RESTRICT C) {
const hn::ScalableTag<MatT> d;
const size_t N = hn::Lanes(d); // column step size
constexpr int RM = 4; // tile height
constexpr int RN = 4; // tile width
HWY_ASSERT(kM % RM == 0);
HWY_ASSERT(kColsA % N == 0);
HWY_ASSERT(kColsA % RN == 0);
int lda = kColsA;
int ldb = kColsA; // n instead of k because we're transposing
int ldc = kK;
int ytiles = (kM) / RM;
int xtiles = (kK) / RN; // k instead of n because we're transposing
int tiles = xtiles * ytiles;
for (int job = 0; job < tiles; ++job) {
GEMM_4x4_Tile<MatT, kColsA>(A, B, C, job, xtiles, lda, ldb, ldc);
}
}
// Tiled 4x4 GEMM. Covers primary M =4..512, k = 3k/24k, n = 24k/3k use case.
// This version uses tiling and pooled threads.
// Note: expects transposed / shuffled B.
template <size_t kM, size_t kColsA, size_t kK, typename MatT>
HWY_NOINLINE void MatMul_4x4_Impl(const MatT* HWY_RESTRICT A,
const MatT* HWY_RESTRICT B,
MatT* HWY_RESTRICT C, hwy::ThreadPool& pool) {
// Process 4x4 chunks of C in parallel. Each pool thread handles a single A x
// B tile. Note that C is being addressed directly without a buffer, and that
// the cache vectors (c00, c01, etc.) are being summed directly into C. There
// may be additional stability / speed gains to be made by using a buffer.
const hn::ScalableTag<MatT> d;
const size_t N = Lanes(d);
const int lda = kColsA;
const int ldb = kColsA; // n instead of k because we're transposing
const int ldc = kK;
// 4x4
const int RM = 4;
const int RN = 4;
const int ytiles = (kM) / RM;
const int xtiles = (kK) / RN; // k instead of n because we're transposing
const int tiles = xtiles * ytiles;
// 4x4 case requires kM % 4 == 0, kN % N == 0, kK % 4 == 0
HWY_ASSERT(kM % RM == 0);
HWY_ASSERT(kColsA % N == 0);
HWY_ASSERT(kColsA % RN == 0);
HWY_ASSERT(kK % RN == 0);
HWY_ASSERT(kColsA >= N);
// Handles a single 4x4 chunk, which is completed and then written into C.
pool.Run(0, tiles, [&](const uint64_t chunk, size_t /*thread*/) HWY_ATTR {
GEMM_4x4_Tile<MatT, kColsA>(A, B, C, chunk, xtiles, lda, ldb, ldc);
});
}
// Requires m % 4 == 0, n % Lanes() == 0, k % 4 == 0
template <size_t kM, size_t kN, size_t kK, typename MatT>
HWY_INLINE void MatMul_4x4(const MatT* HWY_RESTRICT a,
const MatT* HWY_RESTRICT b, MatT* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
return MatMul_4x4_Impl<kM, kN, kK, MatT>(a, b, out, pool);
}
// Largely unoptimized; reordered innermost loops nets ~5-10X speedup on
// ops_test across instruction sets.
template <size_t kM, size_t kN, size_t kK>
HWY_INLINE void MatMul(const float* HWY_RESTRICT a, const float* HWY_RESTRICT b,
float* HWY_RESTRICT out) {
template <size_t kM, size_t kN, size_t kK, typename MatT>
HWY_INLINE void MatMul(const MatT* HWY_RESTRICT a, const MatT* HWY_RESTRICT b,
MatT* HWY_RESTRICT out) {
int i, j, k;
for (i = 0; i < kM; ++i) {
for (k = 0; k < kN; ++k) {
@ -167,8 +336,8 @@ HWY_INLINE void TwoOfsMatVecAddLoop(const ArrayT& mat, const size_t mat_ofs0,
namespace detail {
// For each i = [0, num_rows), compute partial (length `num_cols`) dot product
// of row i with `vec_aligned` and add into `out[i]`. The upper-left coordinate
// of the tile is r0, c0.
// of row i with `vec_aligned` and add into `out[i]`. The upper-left
// coordinate of the tile is r0, c0.
template <bool kVecEO, class DF, typename ArrayT, typename VecT>
HWY_INLINE void AccumulatePartialDotProducts(
DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0,
@ -208,8 +377,8 @@ HWY_INLINE void SetFirstPartialDotProducts(DF df, const ArrayT& mat,
// Adds together partial dot products for all tiles with the same r0 (a
// horizontal strip of the entire matrix); the result is the full dot product
// for rows r in [r0, r0 + num_rows) + optionally the add vector, which we store
// into in out[r - r0].
// for rows r in [r0, r0 + num_rows) + optionally the add vector, which we
// store into in out[r - r0].
template <bool kVecEO, bool kAdd, class DF, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void FullDotProductsForStrip(DF df, const ArrayT& mat,

View File

@ -350,9 +350,44 @@ CompressedArray<float, kOuter * kInner> GenerateMat(size_t offset) {
const float scale = 1.0f / kInner;
for (size_t i = 0; i < kOuter; i++) {
for (size_t j = 0; j < kInner; j++) {
content[i * kInner + j] = static_cast<float>((i + j + offset) * scale);
content[i * kInner + j] =
static_cast<float>((i * kInner + j + offset) * scale);
}
}
// for (size_t i = 0; i < kOuter; i++) {
// for (size_t j = 0; j < kInner; j++) {
// fprintf(stderr, "content[%lu] = %f\n", i * kInner + j,
// content[i * kInner + j]);
// }
// }
Compress(content, ws, mat, pool);
mat.set_scale(1.0f);
return mat;
}
template <size_t kOuter, size_t kInner>
CompressedArray<float, kOuter * kInner> GenerateTransposeMat(size_t offset) {
hwy::ThreadPool pool(0);
gcpp::CompressWorkingSet ws;
CompressedArray<float, kOuter * kInner> mat;
std::array<float, kOuter * kInner> content;
const float scale = 1.0f / kInner;
for (size_t i = 0; i < kOuter; i++) {
for (size_t j = 0; j < kInner; j++) {
content[j * kOuter + i] =
static_cast<float>((i * kInner + j + offset) * scale);
}
}
// for (size_t i = 0; i < kOuter; i++) {
// for (size_t j = 0; j < kInner; j++) {
// fprintf(stderr, "content[%lu] = %f (transpose)\n", i * kInner + j,
// content[i * kInner + j]);
// }
// }
Compress(content, ws, mat, pool);
mat.set_scale(1.0f);
return mat;
@ -403,6 +438,7 @@ hwy::AlignedFreeUniquePtr<float[]> SimpleMatMul(
}
}
}
return out;
}
@ -445,7 +481,7 @@ void AssertClose(const hwy::AlignedFreeUniquePtr<MatT[]>& expected,
double actual_value = hwy::ConvertScalarTo<double>(actual[idx]);
const double tolerance =
expected_value * 20 * 1.0 / (1ULL << hwy::MantissaBits<MatT>());
expected_value * 21 * 1.0 / (1ULL << hwy::MantissaBits<MatT>());
if (!(expected_value - tolerance <= actual_value &&
actual_value <= expected_value + tolerance)) {
@ -456,11 +492,11 @@ void AssertClose(const hwy::AlignedFreeUniquePtr<MatT[]>& expected,
}
}
void TestMatMul() {
void TestTiledMatMul() {
hwy::ThreadPool pool(0);
constexpr size_t kM = 128 * 3; // 384
constexpr size_t kK = 128 * 5; // 640
constexpr size_t kN = 128 * 6; // 768
constexpr size_t kM = 512; // 384
constexpr size_t kN = 512; // * 5; // 6; // 768
constexpr size_t kK = 512; // * 5; // 640
CompressedArray<float, kM * kN> a1 = GenerateMat<kM, kN>(0);
CompressedArray<float, kN * kK> b1 = GenerateMat<kN, kK>(0);
@ -478,6 +514,37 @@ void TestMatMul() {
hwy::AlignedFreeUniquePtr<float[]> c = hwy::AllocateAligned<float>(kM * kK);
Decompress(compressed_c, 0, c.get(), kM * kK);
CompressedArray<float, kN * kK> b1_trans = GenerateTransposeMat<kN, kK>(0);
hwy::AlignedFreeUniquePtr<float[]> b_trans =
hwy::AllocateAligned<float>(kN * kK);
Decompress(b1_trans, 0, b_trans.get(), kN * kK);
MatMul_4x4<kM, kN, kK>(a.get(), b_trans.get(), c.get(), pool);
AssertClose(expected_out1, c, kM * kK);
}
void TestMatMul() {
constexpr size_t kM = 512; // 384
constexpr size_t kN = 512; // * 5; // 6; // 768
constexpr size_t kK = 512; // * 5; // 640
CompressedArray<float, kM * kN> a1 = GenerateMat<kM, kN>(0);
CompressedArray<float, kN * kK> b1 = GenerateMat<kN, kK>(0);
hwy::AlignedFreeUniquePtr<float[]> a = hwy::AllocateAligned<float>(kM * kN);
Decompress(a1, 0, a.get(), kM * kN);
hwy::AlignedFreeUniquePtr<float[]> b = hwy::AllocateAligned<float>(kN * kK);
Decompress(b1, 0, b.get(), kN * kK);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatMul<kM, kN, kK>(a, b);
CompressedArray<float, kM * kK> compressed_c = GenerateZeroMat<kM, kK>(0);
hwy::AlignedFreeUniquePtr<float[]> c = hwy::AllocateAligned<float>(kM * kK);
Decompress(compressed_c, 0, c.get(), kM * kK);
Decompress(b1, 0, b.get(), kN * kK);
MatMul<kM, kN, kK>(a.get(), b.get(), c.get());
AssertClose(expected_out1, c, kM * kK);
@ -583,6 +650,7 @@ HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConst);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllMulByConstAndAdd);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllSoftmax);
HWY_EXPORT_AND_TEST_P(OpsTest, TestAllCreateDistribution);
HWY_EXPORT_AND_TEST_P(OpsTest, TestTiledMatMul);
HWY_EXPORT_AND_TEST_P(OpsTest, TestMatMul);
HWY_EXPORT_AND_TEST_P(OpsTest, TestMatVecAdd);
HWY_EXPORT_AND_TEST_P(OpsTest, TestTwoMatVecAdd);