Adds simple-loop versions of missing batched functions.

PiperOrigin-RevId: 642189741
This commit is contained in:
Daniel Keysers 2024-06-11 02:13:23 -07:00 committed by Copybara-Service
parent c7f5e93136
commit c557ad23a8
2 changed files with 84 additions and 58 deletions

View File

@ -546,6 +546,37 @@ HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
}
}
// The below "batched" versions are just simple loops for now.
template <size_t kBatchSize, typename WeightT, typename OutT>
static void RMSNormBatched(size_t num_tokens, const float* activations,
const WeightT* weights, OutT* out,
const size_t model_dim) {
HWY_DASSERT(num_tokens <= kBatchSize);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
RMSNorm(activations + token_idx * model_dim, weights,
out + token_idx * model_dim, model_dim);
}
}
template <size_t kBatchSize, typename WeightT, typename InOutT>
static void RMSNormInplaceBatched(size_t num_tokens, const WeightT* weights,
InOutT* inout, const size_t model_dim) {
HWY_DASSERT(num_tokens <= kBatchSize);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
RMSNormInplace(weights, inout + token_idx * model_dim, model_dim);
}
}
template <size_t kBatchSize>
static void AddFromBatched(size_t num_tokens, const float* other, float* x,
const size_t model_dim) {
HWY_DASSERT(num_tokens <= kBatchSize);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
AddFrom(other + token_idx * model_dim, x + token_idx * model_dim,
model_dim);
}
}
// Placeholder for internal test3, do not remove
template <size_t kBatchSize, typename WeightArrayT, typename TConfig>
@ -580,12 +611,9 @@ HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
size_t layer_of_type =
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
RMSNorm(activations.x.data() + token_idx * kModelDim,
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data() + token_idx * kModelDim,
kModelDim);
}
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
if (type == LayerAttentionType::kGemma) {
Attention<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
@ -593,38 +621,29 @@ HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
GriffinRecurrent<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
}
pool.Run(0, num_tokens, [&](const uint64_t token_idx,
size_t /*thread*/) HWY_ATTR {
if (TConfig::kPostNormScale) {
RMSNormInplace(layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data() + token_idx * kModelDim,
kModelDim);
}
AddFrom(activations.att_post2.data() + token_idx * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
RMSNorm(activations.x.data() + token_idx * kModelDim,
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data() + token_idx * kModelDim,
kModelDim);
});
FFW<kBatchSize>(activations, num_tokens, layer_weights, pool);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
if (TConfig::kPostNormScale) {
RMSNormInplace(layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data() + token_idx * kModelDim,
kModelDim);
}
AddFrom(activations.ffw_out.data() + token_idx * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.att_post2.data(),
activations.x.data(), kModelDim);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(),
kModelDim);
FFW<kBatchSize>(activations, num_tokens, layer_weights, pool);
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.ffw_out.data(),
activations.x.data(), kModelDim);
} // foreach layer
pool.Run(
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
RMSNormInplace(weights.final_norm_scale.data(),
activations.x.data() + token_idx * kModelDim, kModelDim);
});
RMSNormInplaceBatched<kBatchSize>(num_tokens, weights.final_norm_scale.data(),
activations.x.data(), kModelDim);
}
// n = 1 specialization
@ -654,9 +673,9 @@ HWY_NOINLINE void Transformer(int token, size_t pos,
const auto* layer_weights = weights.GetLayer(layer);
size_t layer_of_type =
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
RMSNorm(activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
RMSNormBatched<1>(1, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
if (type == LayerAttentionType::kGemma) {
Attention<1>(pos, 1, layer_of_type, activations, layer_weights, kv_cache,
pool);
@ -665,18 +684,22 @@ HWY_NOINLINE void Transformer(int token, size_t pos,
kv_cache, pool);
}
if (TConfig::kPostNormScale) {
RMSNormInplace(layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
RMSNormInplaceBatched<1>(1,
layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
}
AddFrom(activations.att_post2.data(), activations.x.data(), kModelDim);
RMSNorm(activations.x.data(), layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(), kModelDim);
AddFromBatched<1>(1, activations.att_post2.data(), activations.x.data(),
kModelDim);
RMSNormBatched<1>(1, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(), kModelDim);
FFW<1>(activations, /* num_tokens = */ 1, layer_weights, pool);
if (TConfig::kPostNormScale) {
RMSNormInplace(layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
RMSNormInplaceBatched<1>(1, layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
}
AddFrom(activations.ffw_out.data(), activations.x.data(), kModelDim);
AddFromBatched<1>(1, activations.ffw_out.data(), activations.x.data(),
kModelDim);
if (layers_output != nullptr) {
std::string block_name = "blocks." + std::to_string(layer);
(*layers_output)(pos, block_name, activations.x.data(), kModelDim);
@ -685,8 +708,8 @@ HWY_NOINLINE void Transformer(int token, size_t pos,
// Placeholder for internal test4, do not remove
RMSNormInplace(weights.final_norm_scale.data(), activations.x.data(),
kModelDim);
RMSNormInplaceBatched<1>(1, weights.final_norm_scale.data(),
activations.x.data(), kModelDim);
if (layers_output != nullptr) {
(*layers_output)(pos, "final_norm", activations.x.data(), kModelDim);
}

View File

@ -942,18 +942,20 @@ static HWY_NOINLINE HWY_MAYBE_UNUSED float SquaredL2(
return hn::ReduceSum(d, hn::Add(sum0, sum1));
}
// float, float -> float; simple loop.
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
const float* HWY_RESTRICT x, const float* HWY_RESTRICT weight,
float* HWY_RESTRICT out, size_t size) {
constexpr float eps = 1e-6f;
constexpr float kEps = 1e-6f;
float ss = SquaredL2(x, size);
ss = 1.0f / sqrtf(ss / StaticCast<float>(size) + eps);
ss = 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps);
for (size_t j = 0; j < size; j++) {
// Note 1.0f centering here
out[j] = (1.0f + weight[j]) * (ss * x[j]);
}
}
// x=f, w=bf16 -> out=f
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
const float* HWY_RESTRICT x, const hwy::bfloat16_t* HWY_RESTRICT weight,
float* HWY_RESTRICT out, size_t size) {
@ -984,11 +986,12 @@ static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
}
}
// float -> float; simple loop.
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace(
const float* HWY_RESTRICT weight, float* HWY_RESTRICT inout, size_t size) {
constexpr float eps = 1e-6f;
constexpr float kEps = 1e-6f;
float ss = SquaredL2(inout, size);
ss = 1.0f / sqrtf(ss / StaticCast<float>(size) + eps);
ss = 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps);
for (size_t j = 0; j < size; j++) {
// Note 1.0f centering here
inout[j] = (1.0f + weight[j]) * (ss * inout[j]);
@ -1005,10 +1008,10 @@ static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace(
using VF = hn::Vec<decltype(df32)>;
const size_t N32 = hn::Lanes(df32);
constexpr float eps = 1e-6f;
constexpr float kEps = 1e-6f;
const float ss = SquaredL2(inout, size);
const VF vss =
hn::Set(df32, 1.0f / sqrtf(ss / StaticCast<float>(size) + eps));
hn::Set(df32, 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps));
HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0);
for (size_t i = 0; i < size; i += 2 * N32) {
@ -1034,10 +1037,10 @@ static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
using VF = hn::Vec<decltype(df32)>;
const size_t N32 = hn::Lanes(df32);
constexpr float eps = 1e-6f;
constexpr float kEps = 1e-6f;
const float ss = SquaredL2(x, size);
const VF vss =
hn::Set(df32, 1.0f / sqrtf(ss / StaticCast<float>(size) + eps));
hn::Set(df32, 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps));
HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0);
for (size_t i = 0; i < size; i += 2 * N32) {
@ -1062,10 +1065,10 @@ static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
using VF = hn::Vec<decltype(df32)>;
const size_t N32 = hn::Lanes(df32);
constexpr float eps = 1e-6f;
constexpr float kEps = 1e-6f;
const float ss = SquaredL2(x, size);
const VF vss =
hn::Set(df32, 1.0f / sqrtf(ss / StaticCast<float>(size) + eps));
hn::Set(df32, 1.0f / sqrtf(ss / StaticCast<float>(size) + kEps));
HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0);
for (size_t i = 0; i < size; i += 2 * N32) {