Add an additional QueryModel() overload to GemmaEnv.

Use args only in GemmaEnv constructor, store everything else in RuntimeConfig.
Add runtime option to turn off thread spinning.

PiperOrigin-RevId: 670467320
This commit is contained in:
Daniel Keysers 2024-09-03 02:24:50 -07:00 committed by Copybara-Service
parent f6abbab3a4
commit a8e08778d4
8 changed files with 86 additions and 59 deletions

View File

@ -129,7 +129,7 @@ int BenchmarkCrossEntropy(GemmaEnv& env, const Path& text,
std::vector<int> prompt_slice(prompt.begin() + pos,
prompt.begin() + pos + num_tokens);
KVCache kv_cache = KVCache::Create(
env.Info().model, env.MutableInferenceArgs().prefill_tbatch_size);
env.GetModel()->Info().model, env.MutableConfig().prefill_tbatch_size);
float entropy = ComputeCrossEntropy(
*env.GetModel(), num_tokens, prompt_slice, kv_cache, env.Verbosity());
total_entropy += entropy;
@ -186,7 +186,9 @@ int main(int argc, char** argv) {
if (!benchmark_args.goldens.Empty()) {
const std::string golden_path =
benchmark_args.goldens.path + "/" +
gcpp::ModelString(env.Info().model, env.Info().training) + ".txt";
gcpp::ModelString(env.GetModel()->Info().model,
env.GetModel()->Info().training) +
".txt";
return BenchmarkGoldens(env, golden_path);
} else if (!benchmark_args.summarize_text.Empty()) {
return BenchmarkSummary(env, benchmark_args.summarize_text);

View File

@ -58,32 +58,27 @@ void InitGenerator(const InferenceArgs& inference, std::mt19937& gen) {
GemmaEnv::GemmaEnv(const LoaderArgs& loader, const InferenceArgs& inference,
const AppArgs& app)
: loader_(loader),
inference_args_(inference),
app_(app),
pools_(app_.max_clusters, app_.num_threads) {
AbortIfInvalidArgs(inference_args_);
if (const char* err = loader_.Validate()) {
loader_.Help();
: pools_(app.max_clusters, app.num_threads, app.pin) {
InferenceArgs mutable_inference = inference;
AbortIfInvalidArgs(mutable_inference);
LoaderArgs mutable_loader = loader;
if (const char* err = mutable_loader.Validate()) {
mutable_loader.Help();
fprintf(stderr, "Skipping model load because: %s\n", err);
} else {
fprintf(stderr, "Loading model...\n");
model_ = AllocateGemma(loader_, pools_);
model_ = AllocateGemma(mutable_loader, pools_);
// Only allocate one for starters because GenerateBatch might not be called.
kv_caches_.resize(1);
kv_caches_[0] =
KVCache::Create(model_->Info().model, inference.prefill_tbatch_size);
}
InitGenerator(inference_args_, gen_);
InitGenerator(inference, gen_);
runtime_config_ = {
.max_tokens = inference_args_.max_tokens,
.max_generated_tokens = inference_args_.max_generated_tokens,
.temperature = inference_args_.temperature,
.verbosity = app_.verbosity,
.max_tokens = inference.max_tokens,
.max_generated_tokens = inference.max_generated_tokens,
.temperature = inference.temperature,
.verbosity = app.verbosity,
.gen = &gen_,
};
}
@ -115,20 +110,30 @@ std::pair<std::string, size_t> GemmaEnv::QueryModel(
res += StringFromTokens(std::vector<int>{token});
return true;
};
if (app_.verbosity >= 2) {
std::cout << "Max tokens: " << inference_args_.max_tokens
if (runtime_config_.verbosity >= 2) {
std::cout << "Max tokens: " << runtime_config_.max_tokens
<< "\tmax generated tokens: "
<< inference_args_.max_generated_tokens
<< "\ttemperature: " << inference_args_.temperature << "\n";
<< runtime_config_.max_generated_tokens
<< "\ttemperature: " << runtime_config_.temperature << "\n";
}
gcpp::TimingInfo timing_info { .verbosity = app_.verbosity };
gcpp::TimingInfo timing_info { .verbosity = runtime_config_.verbosity };
runtime_config_.batch_stream_token = batch_stream_token;
model_->Generate(runtime_config_, tokens, /*start_pos=*/0, kv_caches_[0],
timing_info);
return {res, total_tokens};
}
std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel2(
void GemmaEnv::QueryModel(
const std::vector<int>& tokens, const StreamFunc& stream_token) {
gcpp::TimingInfo timing_info { .verbosity = runtime_config_.verbosity };
const StreamFunc previous_stream_token = runtime_config_.stream_token;
runtime_config_.stream_token = stream_token;
model_->Generate(runtime_config_, tokens, /*start_pos=*/0, kv_caches_[0],
timing_info);
runtime_config_.stream_token = previous_stream_token;
}
std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel(
const QueriesPromptTokens& queries_prompt) {
const size_t num_queries = queries_prompt.size();
HWY_ASSERT(num_queries != 0);
@ -144,12 +149,12 @@ std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel2(
res[query_index].second += 1;
return true;
};
if (app_.verbosity >= 2) {
if (runtime_config_.verbosity >= 2) {
fprintf(stderr,
"Max tok: %zu max gen: %zu temp: %f tbatch: %zu qbatch: %zu\n",
inference_args_.max_tokens, inference_args_.max_generated_tokens,
inference_args_.temperature, inference_args_.prefill_tbatch_size,
inference_args_.decode_qbatch_size);
runtime_config_.max_tokens, runtime_config_.max_generated_tokens,
runtime_config_.temperature, runtime_config_.prefill_tbatch_size,
runtime_config_.decode_qbatch_size);
}
// Ensure we have one KVCache per query.
@ -159,13 +164,12 @@ std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel2(
for (size_t i = 1; i < num_queries; ++i) {
if (kv_caches_[i].seq_len == 0) {
kv_caches_[i] = KVCache::Create(model_->Info().model,
inference_args_.prefill_tbatch_size);
runtime_config_.prefill_tbatch_size);
}
}
gcpp::TimingInfo timing_info = {.verbosity = app_.verbosity};
gcpp::TimingInfo timing_info = {.verbosity = runtime_config_.verbosity};
runtime_config_.batch_stream_token = batch_stream_token;
inference_args_.CopyTo(runtime_config_);
std::vector<size_t> queries_pos(num_queries, 0);
model_->GenerateBatch(runtime_config_, queries_prompt,
QueriesPos(queries_pos.data(), num_queries),
@ -174,8 +178,9 @@ std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel2(
}
std::pair<std::string, size_t> GemmaEnv::QueryModel(std::string& input) {
const std::vector<int> prompt = WrapAndTokenize(model_->Tokenizer(), Info(),
/*pos=*/0, input);
const std::vector<int> prompt =
WrapAndTokenize(model_->Tokenizer(), model_->Info(),
/*pos=*/0, input);
return QueryModel(prompt);
}
@ -194,7 +199,7 @@ std::vector<std::pair<std::string, size_t>> GemmaEnv::BatchQueryModel(
prompt_vector.push_back(PromptTokens(prompt.data(), prompt.size()));
}
QueriesPromptTokens prompt_span(prompt_vector.data(), prompt_vector.size());
return BatchQueryModel2(prompt_span);
return BatchQueryModel(prompt_span);
}
float GemmaEnv::CrossEntropy(const std::string& input) {

View File

@ -41,10 +41,10 @@ class GemmaEnv {
GemmaEnv(const LoaderArgs& loader, const InferenceArgs& inference,
const AppArgs& app);
size_t MaxTokens() const { return inference_args_.max_tokens; }
size_t MaxTokens() const { return runtime_config_.max_tokens; }
// Sets the maximum number of output tokens to generate.
void SetMaxGeneratedTokens(size_t max_tokens) {
inference_args_.max_generated_tokens = max_tokens;
void SetMaxGeneratedTokens(size_t max_generated_tokens) {
runtime_config_.max_generated_tokens = max_generated_tokens;
}
std::vector<int> Tokenize(const std::string& input) const {
@ -68,13 +68,17 @@ class GemmaEnv {
// Runs inference on the given input and returns the top-1 result string and
// the number of tokens that were generated.
std::pair<std::string, size_t> QueryModel(const std::vector<int>& tokens);
std::vector<std::pair<std::string, size_t>> BatchQueryModel2(
std::vector<std::pair<std::string, size_t>> BatchQueryModel(
const QueriesPromptTokens& queries_prompt);
// Adds turn structure to input, tokenizes and calls the above overload.
std::pair<std::string, size_t> QueryModel(std::string& input);
std::vector<std::pair<std::string, size_t>> BatchQueryModel(
const std::vector<std::string>& inputs);
// Runs inference on the given input and calls the callback for each token.
void QueryModel(const std::vector<int>& tokens,
const StreamFunc& stream_token);
// Runs inference on the given input and returns the cross entropy, a measure
// of how well the model predicts the correct output. It is the average
// number of bits per token.
@ -83,20 +87,12 @@ class GemmaEnv {
// Returns nullptr if the model failed to load.
Gemma* GetModel() const { return model_.get(); }
int Verbosity() const { return app_.verbosity; }
int Verbosity() const { return runtime_config_.verbosity; }
RuntimeConfig& MutableConfig() { return runtime_config_; }
const ModelInfo& Info() const { return loader_.Info(); }
InferenceArgs& MutableInferenceArgs() { return inference_args_; }
std::mt19937& MutableGen() { return gen_; }
KVCache& MutableKVCache() { return kv_caches_[0]; }
private:
// Arguments to the model loader: file locations, etc.
LoaderArgs loader_;
// Arguments to the inference function: max tokens, etc.
InferenceArgs inference_args_;
// Controls overall behavior of the app.
AppArgs app_;
// Thread pool for running inference.
PerClusterPools pools_;
// Random number generator.
@ -105,6 +101,7 @@ class GemmaEnv {
std::unique_ptr<Gemma> model_;
// KV caches, same number as query batch.
std::vector<KVCache> kv_caches_;
// Runtime config for inference.
RuntimeConfig runtime_config_;
};

View File

@ -83,7 +83,7 @@ class GemmaTest : public ::testing::Test {
prompt_spans.push_back(PromptTokens(prompt.data(), prompt.size()));
}
QueriesPromptTokens prompts(prompt_spans.data(), prompt_spans.size());
for (auto [response, n] : s_env->BatchQueryModel2(prompts)) {
for (auto [response, n] : s_env->BatchQueryModel(prompts)) {
replies.push_back(response);
}
}
@ -116,7 +116,7 @@ class GemmaTest : public ::testing::Test {
};
TEST_F(GemmaTest, GeographyBatched) {
s_env->MutableInferenceArgs().decode_qbatch_size = 3;
s_env->MutableConfig().decode_qbatch_size = 3;
// 6 are enough to test batching and the loop.
static const char* kQA[][2] = {
{"What is the capital of Australia?", "Canberra"},

View File

@ -104,7 +104,7 @@ void Run(GemmaEnv& env, JsonArgs& json) {
"Do not include any justifications or explanations. Reply only with a "
"letter.";
const std::vector<int> prompt =
WrapAndTokenize(env.GetModel()->Tokenizer(), env.Info(),
WrapAndTokenize(env.GetModel()->Tokenizer(), env.GetModel()->Info(),
/*pos=*/0, prompt_string);
const size_t prompt_size = prompt.size();

View File

@ -98,26 +98,26 @@ struct GenerateBatchT {
void Gemma::Generate(const RuntimeConfig& runtime_config,
const PromptTokens& prompt, size_t pos, KVCache& kv_cache,
TimingInfo& timing_info) {
pools_.StartSpinning();
if (runtime_config.use_spinning) pools_.StartSpinning();
CallForModelAndWeight<GenerateSingleT>(info_.model, info_.weight, weights_u8_,
runtime_config, prompt, pos, kv_cache,
pools_, timing_info);
pools_.StopSpinning();
if (runtime_config.use_spinning) pools_.StopSpinning();
}
void Gemma::GenerateBatch(const RuntimeConfig& runtime_config,
const QueriesPromptTokens& queries_prompt,
const QueriesPos& queries_pos,
const KVCaches& kv_caches, TimingInfo& timing_info) {
pools_.StartSpinning();
if (runtime_config.use_spinning) pools_.StartSpinning();
CallForModelAndWeight<GenerateBatchT>(
info_.model, info_.weight, weights_u8_, runtime_config, queries_prompt,
queries_pos, kv_caches, pools_, timing_info);
pools_.StopSpinning();
if (runtime_config.use_spinning) pools_.StopSpinning();
}
template <typename TConfig>

View File

@ -27,6 +27,7 @@
#include "gemma/common.h"
#include "gemma/kv_cache.h"
#include "gemma/tokenizer.h"
#include "util/allocator.h"
#include "util/threading.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/timer.h"
@ -74,7 +75,10 @@ using LayersOutputFunc = std::function<void(size_t, size_t, const std::string&,
using ActivationsObserverFunc =
std::function<void(const QueriesPos& queries_pos, int, const Activations&)>;
// RuntimeConfig holds configuration for a single generation run.
struct RuntimeConfig {
// If not empty, batch_stream_token is called for each token in the batch,
// instead of stream_token.
bool StreamToken(size_t query_idx, size_t pos, int token, float prob) const {
if (batch_stream_token) {
return batch_stream_token(query_idx, pos, token, prob);
@ -82,6 +86,7 @@ struct RuntimeConfig {
return stream_token(token, prob);
}
// Limits on the number of tokens generated.
size_t max_tokens;
size_t max_generated_tokens;
@ -91,15 +96,24 @@ struct RuntimeConfig {
// Max queries per batch (one token from each) during decode.
size_t decode_qbatch_size = 16;
float temperature;
int verbosity;
std::mt19937* gen;
float temperature; // Temperature for sampling.
int verbosity; // Controls verbosity of printed messages.
std::mt19937* gen; // Random number generator used for sampling.
// Functions operating on the generated tokens.
StreamFunc stream_token;
BatchStreamFunc batch_stream_token;
AcceptFunc accept_token; // if empty, accepts all tokens.
SampleFunc sample_func; // if empty, uses SampleTopK.
// Observer callbacks for intermediate data.
LayersOutputFunc layers_output; // if not empty, called after each layer.
ActivationsObserverFunc activations_observer; // if set, called per-layer
ActivationsObserverFunc activations_observer; // if set, called per-layer.
// Whether to use thread spinning to reduce barrier synchronization latency.
bool use_spinning = true;
// End-of-sequence token.
int eos_id = EOS_ID;
};

View File

@ -53,6 +53,7 @@ static inline const char* CompiledConfig() {
class AppArgs : public ArgsBase<AppArgs> {
public:
AppArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
AppArgs() { Init(); };
int verbosity;
@ -88,6 +89,13 @@ class AppArgs : public ArgsBase<AppArgs> {
struct LoaderArgs : public ArgsBase<LoaderArgs> {
LoaderArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
LoaderArgs(const std::string& tokenizer_path, const std::string& weights_path,
const std::string& model) {
Init(); // Init sets to defaults, so assignments must come after Init().
tokenizer.path = tokenizer_path;
weights.path = weights_path;
model_type_str = model;
};
// Returns error string or nullptr if OK.
const char* Validate() {
@ -168,6 +176,7 @@ static inline std::unique_ptr<Gemma> AllocateGemma(const LoaderArgs& loader,
struct InferenceArgs : public ArgsBase<InferenceArgs> {
InferenceArgs(int argc, char* argv[]) { InitAndParse(argc, argv); }
InferenceArgs() { Init(); };
size_t max_tokens;
size_t max_generated_tokens;