Split matmul into matvec; add large matrix benchmark

Rename var names to row/col for more clarity.
Better estimate error tolerance via max abs col sum.

PiperOrigin-RevId: 657601791
This commit is contained in:
Jan Wassenberg 2024-07-30 08:26:51 -07:00 committed by Copybara-Service
parent d37c088e44
commit a24eda8d02
8 changed files with 716 additions and 568 deletions

View File

@ -25,6 +25,7 @@ cc_library(
textual_hdrs = [
"ops/ops-inl.h",
"ops/matmul-inl.h",
"ops/matvec-inl.h",
],
deps = [
"//compression:compress",
@ -56,6 +57,25 @@ cc_test(
],
)
cc_test(
name = "matvec_test",
size = "small",
timeout = "long",
srcs = ["ops/matvec_test.cc"],
local_defines = ["HWY_IS_TEST"],
# for test_suite.
tags = ["hwy_ops_test"],
deps = [
":ops",
"@googletest//:gtest_main", # buildcleaner: keep
"//compression:compress",
"@hwy//:hwy",
"@hwy//:hwy_test_util",
"@hwy//:nanobenchmark",
"@hwy//:thread_pool",
],
)
cc_test(
name = "matmul_test",
size = "small",

View File

@ -98,6 +98,7 @@ set(SOURCES
gemma/weights.cc
gemma/weights.h
ops/matmul-inl.h
ops/matvec-inl.h
ops/ops-inl.h
util/app.h
util/args.h
@ -148,7 +149,9 @@ set(GEMMA_TEST_FILES
backprop/backward_test.cc
backprop/backward_scalar_test.cc
backprop/optimize_test.cc
gemma/ops_test.cc
ops/ops_test.cc
ops/matmul_test.cc
ops/matvec_test.cc
evals/gemma_test.cc
)

View File

@ -39,7 +39,7 @@
#define THIRD_PARTY_GEMMA_CPP_FORWARD_TOGGLE
#endif
#include "ops/matmul-inl.h"
#include "ops/matvec-inl.h"
#include "ops/ops-inl.h"
#include "hwy/highway.h"

View File

@ -40,11 +40,11 @@
#include "gemma/weights.h"
// Placeholder for internal test4, do not remove
#include "ops/matmul-inl.h"
#include "ops/matvec-inl.h"
#include "ops/ops-inl.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/bit_set.h"
#include "hwy/contrib/matvec/matvec-inl.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/contrib/thread_pool/topology.h"
#include "hwy/highway.h"

View File

@ -21,8 +21,6 @@
#include <stdint.h>
#include <stdio.h>
#include "compression/compress.h"
#include "compression/sfp.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/profiler.h"
@ -38,9 +36,7 @@
#endif
#include "compression/compress-inl.h"
#include "hwy/contrib/dot/dot-inl.h"
#include "hwy/contrib/math/math-inl.h"
#include "hwy/contrib/matvec/matvec-inl.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
@ -443,309 +439,6 @@ HWY_NOINLINE void MatMul_4x4(const size_t batch_size, const Mat<MatTA>& A,
});
}
//------------------------------------------------------------------------------
HWY_INLINE void ToEvenOddF32(const hwy::bfloat16_t* HWY_RESTRICT vec_aligned,
const size_t size, float* HWY_RESTRICT out) {
const hn::ScalableTag<float> df;
const hn::Repartition<hwy::bfloat16_t, decltype(df)> dbf16;
HWY_DASSERT(size % hn::Lanes(dbf16) == 0);
HWY_DASSERT(hn::IsAligned(df, vec_aligned));
for (size_t i = 0; i < size; i += hn::Lanes(dbf16)) {
const auto interleaved = hn::LoadU(dbf16, vec_aligned + i);
hn::Store(hn::PromoteEvenTo(df, interleaved), df, out + i);
hn::Store(hn::PromoteOddTo(df, interleaved), df, out + i + hn::Lanes(df));
}
}
HWY_INLINE void ToEvenOddF32(const float* HWY_RESTRICT vec_aligned,
const size_t size, float* HWY_RESTRICT out) {
const hn::ScalableTag<float> df;
using VF = hn::Vec<decltype(df)>;
HWY_DASSERT(size % (hn::Lanes(df) * 2) == 0);
HWY_DASSERT(hn::IsAligned(df, vec_aligned));
VF vec0, vec1;
for (size_t i = 0; i < size; i += hn::Lanes(df) * 2) {
hn::LoadInterleaved2(df, vec_aligned + i, vec0, vec1);
hn::Store(vec0, df, out + i);
hn::Store(vec1, df, out + i + hn::Lanes(df));
}
}
// Simple version without tiling nor threading, but two offsets/outputs and
// always with addition.
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void TwoOfsMatVecAddLoop(const ArrayT& mat, const size_t mat_ofs0,
const size_t mat_ofs1,
const VecT* HWY_RESTRICT vec_aligned,
const AddT* HWY_RESTRICT add0,
const AddT* HWY_RESTRICT add1,
float* HWY_RESTRICT out0,
float* HWY_RESTRICT out1) {
PROFILER_ZONE("TwoOfsMatVecAddLoop");
constexpr bool kVecEO = false;
const hn::ScalableTag<float> df;
for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) {
const size_t row_ofs0 = mat_ofs0 + (idx_row)*kInner;
const size_t row_ofs1 = mat_ofs1 + (idx_row)*kInner;
out0[idx_row] = hwy::ConvertScalarTo<float>(add0[idx_row]) +
Dot<kVecEO>(df, mat, row_ofs0, vec_aligned, kInner);
out1[idx_row] = hwy::ConvertScalarTo<float>(add1[idx_row]) +
Dot<kVecEO>(df, mat, row_ofs1, vec_aligned, kInner);
}
}
HWY_INLINE constexpr size_t MaxCols() {
// Vec + mat rows should fit into 32 KiB L1.
return 2048;
}
template <size_t kOuter>
HWY_INLINE constexpr size_t RowsPerStrip() {
// Aim for 128 work items to reduce pool overhead. Must be at least one
// vector; prefer a power of two for faster division.
constexpr size_t kLanes = hn::ScalableTag<float>().MaxLanes();
constexpr size_t kRowsPerStrip =
kOuter < 128 ? kLanes
: HWY_MAX(kLanes, 1ULL << hwy::FloorLog2(kOuter / 128));
return kRowsPerStrip;
}
namespace detail {
// For each i = [0, num_rows), compute partial (length `num_cols`) dot product
// of row i with `vec_aligned` and add into `out[i]`. The upper-left
// coordinate of the tile is r0, c0.
template <bool kVecEO, class DF, typename ArrayT, typename VecT>
HWY_INLINE void AccumulatePartialDotProducts(
DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0,
size_t c0, size_t num_rows, size_t num_cols,
const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) {
for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) {
const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride;
out[idx_row] +=
Dot<kVecEO>(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
}
}
// Same as AccumulatePartialDotProducts, but sets out[i] to the first partial
// dot product + init (if kInit), which avoids having to zero-initialize and
// accumulate.
template <bool kVecEO, bool kInit, class DF, typename ArrayT, typename VecT,
typename InitT>
HWY_INLINE void SetFirstPartialDotProducts(DF df, const ArrayT& mat,
size_t mat_ofs, size_t mat_stride,
size_t r0, size_t c0,
size_t num_rows, size_t num_cols,
const VecT* HWY_RESTRICT vec_aligned,
const InitT* HWY_RESTRICT init,
float* HWY_RESTRICT out) {
for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) {
const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride;
if constexpr (kInit) {
out[idx_row] =
hwy::ConvertScalarTo<float>(init[idx_row + r0]) +
Dot<kVecEO>(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
} else {
out[idx_row] =
Dot<kVecEO>(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
}
}
}
// Adds together partial dot products for all tiles with the same r0 (a
// horizontal strip of the entire matrix); the result is the full dot product
// for rows r in [r0, r0 + num_rows) + optionally the add vector, which we
// store into in out[r - r0].
template <bool kVecEO, bool kAdd, class DF, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void FullDotProductsForStrip(DF df, const ArrayT& mat,
size_t mat_ofs, size_t mat_stride,
size_t r0, size_t num_rows,
const VecT* HWY_RESTRICT vec_aligned,
const AddT* HWY_RESTRICT add,
float* HWY_RESTRICT out) {
// Tall and skinny: set `out` to the single dot product.
if (mat_stride < MaxCols()) {
SetFirstPartialDotProducts<kVecEO, kAdd>(df, mat, mat_ofs, mat_stride, r0,
0, num_rows, mat_stride,
vec_aligned, add, out);
return;
}
// We have at least MaxCols, so start by setting `out` to that:
SetFirstPartialDotProducts<kVecEO, kAdd>(df, mat, mat_ofs, mat_stride, r0, 0,
num_rows, MaxCols(), vec_aligned,
add, out);
// For further multiples of MaxCols, accumulate. Remainders handled below.
size_t c0 = MaxCols();
for (; c0 <= mat_stride - MaxCols(); c0 += MaxCols()) {
AccumulatePartialDotProducts<kVecEO>(df, mat, mat_ofs, mat_stride, r0, c0,
num_rows, MaxCols(), vec_aligned, out);
}
if (c0 < mat_stride) { // Final cols
AccumulatePartialDotProducts<kVecEO>(df, mat, mat_ofs, mat_stride, r0, c0,
num_rows, mat_stride - c0, vec_aligned,
out);
}
}
template <bool kVecIsEvenOdd, bool kAdd, size_t kOuter, size_t kInner,
typename ArrayT, typename VecT, typename AddT>
HWY_INLINE void MatVecAddInner(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
const AddT* HWY_RESTRICT const add,
float* HWY_RESTRICT out, hwy::ThreadPool& pool) {
const hn::ScalableTag<float> df;
constexpr size_t kRowsPerStrip = RowsPerStrip<kOuter>();
constexpr size_t kNumStrips = kOuter / kRowsPerStrip;
// For each entire strip.
pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR {
PROFILER_ZONE("MatVec.lambda");
const size_t r0 = strip * kRowsPerStrip;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add,
out + r0);
});
// Remaining rows
const size_t r0 = kNumStrips * kRowsPerStrip;
if (r0 < kOuter) {
PROFILER_ZONE("MatVec remainder");
const size_t num_rows = kOuter - r0;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat, mat_ofs, kInner, r0, num_rows, vec_aligned, add, out + r0);
}
}
} // namespace detail
// Stores dot products of rows with `vec_aligned` + add the values from `add`
// (if kAdd), then stores them to `out`.
template <bool kAdd, size_t kOuter, size_t kInner, typename ArrayT,
typename VecT, typename AddT>
HWY_INLINE void MatVecT(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
const AddT* HWY_RESTRICT const add,
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
PROFILER_ZONE("MatVecAdd");
#if !defined(HWY_NATIVE_DOT_BF16) || !HWY_NATIVE_DOT_BF16
using MatT = typename ArrayT::value_type;
// Sfp -> float does not benefit enough to recoup the cost of ToEvenOddF32.
if constexpr (CompressTraits<MatT>::kSupportsEvenOdd &&
hwy::IsSameEither<VecT, float, hwy::bfloat16_t>() &&
!(hwy::IsSame<MatT, SfpStream>() &&
hwy::IsSame<VecT, float>())) {
ToEvenOddF32(vec_aligned, kInner, even_odd);
detail::MatVecAddInner</*kVecIsEvenOdd=*/true, kAdd, kOuter, kInner>(
mat, mat_ofs, even_odd, add, out, pool);
return;
}
#else
(void)even_odd;
#endif
detail::MatVecAddInner</*kVecIsEvenOdd=*/false, kAdd, kOuter, kInner>(
mat, mat_ofs, vec_aligned, add, out, pool);
}
// With addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void MatVecAdd(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
const AddT* HWY_RESTRICT const add,
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
return MatVecT</*kAdd=*/true, kOuter, kInner>(mat, mat_ofs, vec_aligned, add,
even_odd, out, pool);
}
// Without addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT>
HWY_INLINE void MatVec(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
MatVecT</*kAdd=*/false, kOuter, kInner>(mat, mat_ofs, vec_aligned,
/*add=*/static_cast<VecT*>(nullptr),
even_odd, out, pool);
}
// Two matrices, same vector
template <bool kAdd, size_t kOuter, size_t kInner, typename ArrayT,
typename VecT, typename AddT>
HWY_NOINLINE void TwoMatVecT(const ArrayT& mat0, const ArrayT& mat1,
const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned,
const AddT* HWY_RESTRICT add0,
const AddT* HWY_RESTRICT add1,
float* HWY_RESTRICT out0, float* HWY_RESTRICT out1,
hwy::ThreadPool& pool) {
PROFILER_ZONE("TwoMatVecAdd");
const hn::ScalableTag<float> df;
constexpr size_t kRowsPerStrip = RowsPerStrip<kOuter>();
constexpr size_t kNumStrips = kOuter / kRowsPerStrip;
constexpr bool kVecIsEvenOdd = false;
// For each entire strip.
pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR {
PROFILER_ZONE("TwoMatVec.lambda");
const size_t r0 = strip * kRowsPerStrip;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat0, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add0,
out0 + r0);
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat1, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add1,
out1 + r0);
});
// Remaining rows
const size_t r0 = kNumStrips * kRowsPerStrip;
if (r0 < kOuter) {
PROFILER_ZONE("TwoMatVec remainder");
const size_t num_rows = kOuter - r0;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat0, mat_ofs, kInner, r0, num_rows, vec_aligned, add0, out0 + r0);
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat1, mat_ofs, kInner, r0, num_rows, vec_aligned, add1, out1 + r0);
}
}
// With addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT,
typename AddT>
HWY_NOINLINE void TwoMatVecAdd(
const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0,
const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0,
float* HWY_RESTRICT out1, hwy::ThreadPool& pool) {
return TwoMatVecT</*kAdd=*/true, kOuter, kInner>(
mat0, mat1, mat_ofs, vec_aligned, add0, add1, out0, out1, pool);
}
// Without addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT>
HWY_NOINLINE void TwoMatVec(const ArrayT& mat0, const ArrayT& mat1,
const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned,
float* HWY_RESTRICT out0, float* HWY_RESTRICT out1,
hwy::ThreadPool& pool) {
TwoMatVecT</*kAdd=*/false, kOuter, kInner, ArrayT, VecT, VecT>(
mat0, mat1, mat_ofs, vec_aligned, /*add0=*/nullptr, /*add1=*/nullptr,
out0, out1, pool);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp

View File

@ -21,9 +21,6 @@
#include <stddef.h>
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <memory>
#include "compression/compress.h"
@ -41,7 +38,6 @@
#include "hwy/tests/test_util-inl.h"
// After highway.h
#include "ops/matmul-inl.h"
#include "ops/ops-inl.h" // MulByConst
HWY_BEFORE_NAMESPACE();
namespace gcpp {
@ -49,102 +45,115 @@ namespace HWY_NAMESPACE {
namespace hn = hwy::HWY_NAMESPACE;
template <typename MatT, size_t kOuter, size_t kInner>
std::unique_ptr<CompressedArray<MatT, kOuter * kInner>> GenerateMatHeap(
// Generates inputs: deterministic, within max SfpStream range.
template <typename MatT, size_t kRows, size_t kCols>
std::unique_ptr<CompressedArray<MatT, kRows * kCols>> GenerateMatHeap(
size_t offset, hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
hwy::AlignedFreeUniquePtr<float[]> content =
hwy::AllocateAligned<float>(kOuter * kInner);
const float scale = 1.875f / (kInner * kOuter + offset);
pool.Run(0, kOuter, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kInner; j++) {
content[i * kInner + j] =
static_cast<float>((i * kInner + j + offset) * scale);
hwy::AllocateAligned<float>(kRows * kCols);
const float scale = 1.875f / (kCols * kRows + offset);
pool.Run(0, kRows, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kCols; j++) {
content[i * kCols + j] =
static_cast<float>((i * kCols + j + offset) * scale);
}
});
std::unique_ptr<CompressedArray<MatT, kOuter * kInner>> mat =
std::make_unique<CompressedArray<MatT, kOuter * kInner>>();
Compress(content.get(), kOuter * kInner, ws, kOuter * kInner, mat->data(), 0,
std::unique_ptr<CompressedArray<MatT, kRows * kCols>> mat =
std::make_unique<CompressedArray<MatT, kRows * kCols>>();
Compress(content.get(), kRows * kCols, ws, kRows * kCols, mat->data(), 0,
pool);
mat->set_scale(0.6f); // Arbitrary value, different from 1.
return mat;
}
template <typename MatT, size_t kOuter, size_t kInner>
std::unique_ptr<CompressedArray<MatT, kOuter * kInner>>
GenerateTransposeMatHeap(size_t offset, hwy::ThreadPool& pool) {
template <typename MatT, size_t kRows, size_t kCols>
std::unique_ptr<CompressedArray<MatT, kRows * kCols>> GenerateTransposeMatHeap(
size_t offset, hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
hwy::AlignedFreeUniquePtr<float[]> content =
hwy::AllocateAligned<float>(kOuter * kInner);
const float scale = 1.875f / (kInner * kOuter + offset);
pool.Run(0, kOuter, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kInner; j++) {
content[j * kOuter + i] =
static_cast<float>((i * kInner + j + offset) * scale);
hwy::AllocateAligned<float>(kRows * kCols);
const float scale = 1.875f / (kCols * kRows + offset);
pool.Run(0, kRows, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kCols; j++) {
content[j * kRows + i] =
static_cast<float>((i * kCols + j + offset) * scale);
}
});
std::unique_ptr<CompressedArray<MatT, kOuter * kInner>> mat =
std::make_unique<CompressedArray<MatT, kOuter * kInner>>();
Compress(content.get(), kOuter * kInner, ws, kOuter * kInner, mat->data(), 0,
std::unique_ptr<CompressedArray<MatT, kRows * kCols>> mat =
std::make_unique<CompressedArray<MatT, kRows * kCols>>();
Compress(content.get(), kRows * kCols, ws, kRows * kCols, mat->data(), 0,
pool);
// Arbitrary value, different from 1, must match GenerateMatHeap.
mat->set_scale(0.6f);
return mat;
}
template <typename MatT, size_t kOuter, size_t kInner>
std::unique_ptr<CompressedArray<MatT, kOuter * kInner>> GenerateZeroMatHeap(
template <typename MatT, size_t kRows, size_t kCols>
std::unique_ptr<CompressedArray<MatT, kRows * kCols>> GenerateZeroMatHeap(
hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
hwy::AlignedFreeUniquePtr<float[]> content =
hwy::AllocateAligned<float>(kOuter * kInner);
hwy::AllocateAligned<float>(kRows * kCols);
pool.Run(0, kOuter, [&](const size_t i, size_t thread) {
hwy::ZeroBytes(&content[i * kInner], kInner * sizeof(content[0]));
pool.Run(0, kRows, [&](const size_t i, size_t thread) {
hwy::ZeroBytes(&content[i * kCols], kCols * sizeof(content[0]));
});
std::unique_ptr<CompressedArray<MatT, kOuter * kInner>> mat =
std::make_unique<CompressedArray<MatT, kOuter * kInner>>();
Compress(content.get(), kOuter * kInner, ws, kOuter * kInner, mat->data(), 0,
std::unique_ptr<CompressedArray<MatT, kRows * kCols>> mat =
std::make_unique<CompressedArray<MatT, kRows * kCols>>();
Compress(content.get(), kRows * kCols, ws, kRows * kCols, mat->data(), 0,
pool);
mat->set_scale(1.2f); // Arbitrary value, different from 1.
return mat;
}
// A simple matrix multiplication. No optimization / tiling.
template <size_t kM, size_t kN, size_t kK>
hwy::AlignedFreeUniquePtr<float[]> SimpleMatMul(
const hwy::AlignedFreeUniquePtr<float[]>& a,
const hwy::AlignedFreeUniquePtr<float[]>& b) {
hwy::AlignedFreeUniquePtr<float[]> out = hwy::AllocateAligned<float>(kM * kK);
hwy::ZeroBytes(out.get(), kM * kK * sizeof(float));
int i, j, k;
for (i = 0; i < kM; ++i) {
for (j = 0; j < kK; ++j) {
for (k = 0; k < kN; ++k) {
out[i * kK + j] += a[i * kN + k] * b[k * kK + j];
}
}
}
return out;
template <typename MatT>
void Decompress(const MatT* compressed, size_t num, float* out) {
const hn::ScalableTag<float> d;
hwy::AlignedFreeUniquePtr<float[]> b = hwy::AllocateAligned<float>(num);
CompressTraits<MatT>::Decompress(d, /*in_capacity=*/0, compressed, 0, out,
num);
}
template <typename MatT>
void AssertClose(const MatT* HWY_RESTRICT expected,
const MatT* HWY_RESTRICT actual, size_t num) {
for (size_t idx = 0; idx < num; idx++) {
const double expected_value = hwy::ConvertScalarTo<double>(expected[idx]);
const double actual_value = hwy::ConvertScalarTo<double>(actual[idx]);
// Returns 1-norm, used for estimating tolerable numerical differences.
double MaxColAbsSum(const float* HWY_RESTRICT a, size_t rows, size_t cols) {
double max_col_abs_sum = 0.0;
for (size_t c = 0; c < cols; c++) {
double col_abs_sum = 0.0;
for (size_t r = 0; r < rows; r++) {
col_abs_sum += hwy::ScalarAbs(a[r * cols + c]);
}
max_col_abs_sum = HWY_MAX(max_col_abs_sum, col_abs_sum);
}
return max_col_abs_sum;
}
const double magnitude = std::abs(expected_value);
template <typename MatTA, typename MatTB>
void AssertClose(size_t rows_ac, size_t cols_ab, size_t cols_c_rows_b,
const MatTA* HWY_RESTRICT a_compr,
const MatTB* HWY_RESTRICT b_trans_compr,
const float* HWY_RESTRICT expected_c,
const float* HWY_RESTRICT actual_c) {
const size_t num_a = rows_ac * cols_ab;
const size_t num_b = cols_c_rows_b * cols_ab;
const size_t num_c = rows_ac * cols_c_rows_b;
hwy::AlignedFreeUniquePtr<float[]> a = hwy::AllocateAligned<float>(num_a);
hwy::AlignedFreeUniquePtr<float[]> b_trans =
hwy::AllocateAligned<float>(num_b);
Decompress(a_compr, num_a, a.get());
Decompress(b_trans_compr, num_b, b_trans.get());
const double tolerance =
256.0 * hwy::ConvertScalarTo<double>(hwy::Epsilon<MatT>()) *
HWY_MAX(magnitude, 1.0);
const double norm = MaxColAbsSum(a.get(), rows_ac, cols_ab) *
MaxColAbsSum(b_trans.get(), cols_c_rows_b, cols_ab);
const double epsilon = hwy::ConvertScalarTo<double>(hwy::Epsilon<float>());
const double tolerance = 50.0 * norm * epsilon;
for (size_t idx = 0; idx < num_c; idx++) {
const double expected_value = expected_c[idx];
const double actual_value = actual_c[idx];
if (!(expected_value - tolerance <= actual_value &&
actual_value <= expected_value + tolerance)) {
@ -154,35 +163,23 @@ void AssertClose(const MatT* HWY_RESTRICT expected,
}
}
}
template <size_t length>
void AssertClose(const hwy::AlignedFreeUniquePtr<float[]>& a,
const hwy::AlignedFreeUniquePtr<float[]>& b) {
for (size_t idx = 0; idx < length; idx++) {
const float rel_abs_delta = std::abs(a[idx] - b[idx]) /
std::max(std::abs(a[idx]), std::abs(b[idx]));
EXPECT_LT(rel_abs_delta, 2e-6)
<< "a[" << idx << "]=" << a[idx] << ", b[" << idx << "]=" << b[idx];
}
}
// Largely unoptimized; reordered innermost loops nets ~5-10X speedup.
template <size_t kN, size_t kK, typename MatTA, typename MatTB,
HWY_IF_T_SIZE_GT(MatTB, 1)>
HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a,
const MatTB* HWY_RESTRICT b, const float scale,
const float* add, float* HWY_RESTRICT out) {
for (size_t i = 0; i < batch_size; ++i) {
for (size_t k = 0; k < kN; ++k) {
for (size_t j = 0; j < kK; ++j) {
const float a1 = hwy::ConvertScalarTo<float>(a[i * kN + k]);
const float b1 = hwy::ConvertScalarTo<float>(b[k * kK + j]);
out[i * kK + j] += scale * a1 * b1;
template <typename MatTA, typename MatTB, HWY_IF_T_SIZE_GT(MatTB, 1)>
HWY_INLINE void MatMulSlow(size_t rows_ac, size_t cols_a_rows_b, size_t cols_bc,
const MatTA* HWY_RESTRICT a,
const MatTB* HWY_RESTRICT b, const float scale,
const float* add, float* HWY_RESTRICT out) {
for (size_t i = 0; i < rows_ac; ++i) {
for (size_t k = 0; k < cols_a_rows_b; ++k) {
for (size_t j = 0; j < cols_bc; ++j) {
const float a1 = hwy::ConvertScalarTo<float>(a[i * cols_a_rows_b + k]);
const float b1 = hwy::ConvertScalarTo<float>(b[k * cols_bc + j]);
out[i * cols_bc + j] += scale * a1 * b1;
}
}
if (add != nullptr) {
for (size_t j = 0; j < kK; ++j) {
out[i * kK + j] += add[j];
for (size_t j = 0; j < cols_bc; ++j) {
out[i * cols_bc + j] += add[j];
}
}
}
@ -190,74 +187,78 @@ HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a,
// The above overload can handle combinations of f32 and bf16, but this one
// is required for MatTB = {SFP, NUQ}.
template <size_t kN, size_t kK, typename MatTA, typename MatTB,
HWY_IF_T_SIZE(MatTB, 1)>
HWY_INLINE void MatMulSlowBatch(size_t batch_size, const MatTA* HWY_RESTRICT a,
const MatTB* HWY_RESTRICT b_compr,
const float scale, const float* add,
float* HWY_RESTRICT out) {
template <typename MatTA, typename MatTB, HWY_IF_T_SIZE(MatTB, 1)>
HWY_INLINE void MatMulSlow(size_t rows_ac, size_t cols_a_rows_b, size_t cols_bc,
const MatTA* HWY_RESTRICT a,
const MatTB* HWY_RESTRICT b_compr, const float scale,
const float* add, float* HWY_RESTRICT out) {
const hn::ScalableTag<float> d;
hwy::AlignedFreeUniquePtr<float[]> b = hwy::AllocateAligned<float>(kK * kN);
hwy::AlignedFreeUniquePtr<float[]> b =
hwy::AllocateAligned<float>(cols_a_rows_b * cols_bc);
CompressTraits<MatTB>::Decompress(d, /*in_capacity=*/0, b_compr, 0, b.get(),
kK * kN);
MatMulSlowBatch<kN, kK>(batch_size, a, b.get(), scale, add, out);
cols_a_rows_b * cols_bc);
MatMulSlow(rows_ac, cols_a_rows_b, cols_bc, a, b.get(), scale, add, out);
}
void PrintSpeed(const char* algo, size_t M, size_t N, size_t K,
double elapsed) {
// * 2 because of FMA.
void PrintSpeed(const char* algo, size_t rows_ac, size_t cols_a_rows_b,
size_t cols_bc, double elapsed) {
// 2 because of FMA.
fprintf(stderr, "%s: %f seconds, %f GFLOPS.\n", algo, elapsed,
2E-9 * M * N * K / elapsed);
2E-9 * rows_ac * cols_a_rows_b * cols_bc / elapsed);
}
template <size_t kM, size_t kN, size_t kK, bool kAdd, typename MatTA,
typename MatTB = MatTA>
template <size_t kRowsAC, size_t kColsARowsB, size_t kColsBC, bool kAdd,
typename MatTA, typename MatTB = MatTA>
void TestMatMul(hwy::ThreadPool& pool) {
using TraitsA = CompressTraits<MatTA>;
using TraitsB = CompressTraits<MatTB>;
fprintf(stderr, "TestMatMul %lu, %lu, %lu, add=%d, MatTA=%s, MatTB=%s\n", kM,
kN, kK, kAdd, TraitsA::Name(), TraitsB::Name());
const bool want_bench = kColsBC > 2000; // avoid spam for small matrices
fprintf(stderr, "TestMatMul %lu, %lu, %lu, add=%d, MatTA=%s, MatTB=%s\n",
kRowsAC, kColsARowsB, kColsBC, kAdd, TraitsA::Name(),
TraitsB::Name());
std::unique_ptr<CompressedArray<MatTA, kM * kN>> a =
GenerateMatHeap<MatTA, kM, kN>(0, pool);
std::unique_ptr<CompressedArray<MatTB, kN * kK>> b_trans =
GenerateTransposeMatHeap<MatTB, kN, kK>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> c = hwy::AllocateAligned<float>(kM * kK);
std::unique_ptr<CompressedArray<MatTA, kRowsAC * kColsARowsB>> a =
GenerateMatHeap<MatTA, kRowsAC, kColsARowsB>(0, pool);
std::unique_ptr<CompressedArray<MatTB, kColsARowsB * kColsBC>> b_trans =
GenerateTransposeMatHeap<MatTB, kColsARowsB, kColsBC>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> c =
hwy::AllocateAligned<float>(kRowsAC * kColsBC);
const float scale = a->scale() * b_trans->scale();
std::unique_ptr<CompressedArray<float, kK>> add;
std::unique_ptr<CompressedArray<float, kColsBC>> add;
if (kAdd) {
add = GenerateMatHeap<float, 1, kK>(0, pool);
add = GenerateMatHeap<float, 1, kColsBC>(0, pool);
add->set_scale(1.0f);
}
std::unique_ptr<CompressedArray<float, kM * kK>> c_slow;
const bool compare_slow = kN < 2048;
if (compare_slow) {
std::unique_ptr<CompressedArray<MatTB, kN * kK>> b =
GenerateMatHeap<MatTB, kN, kK>(0, pool);
HWY_ASSERT_EQ(scale, a->scale() * b->scale());
c_slow = GenerateZeroMatHeap<float, kM, kK>(pool);
const double start_slow = hwy::platform::Now();
MatMulSlowBatch<kN, kK>(kM, a->data(), b->data(), scale,
kAdd ? add->data() : nullptr, c_slow->data());
PrintSpeed("MatMulSlowBatch", kM, kN, kK,
std::unique_ptr<CompressedArray<MatTB, kColsARowsB * kColsBC>> b =
GenerateMatHeap<MatTB, kColsARowsB, kColsBC>(0, pool);
HWY_ASSERT_EQ(scale, a->scale() * b->scale());
std::unique_ptr<CompressedArray<float, kRowsAC * kColsBC>> c_slow =
GenerateZeroMatHeap<float, kRowsAC, kColsBC>(pool);
const double start_slow = hwy::platform::Now();
MatMulSlow(kRowsAC, kColsARowsB, kColsBC, a->data(), b->data(), scale,
kAdd ? add->data() : nullptr, c_slow->data());
if (want_bench) {
PrintSpeed("MatMulSlow", kRowsAC, kColsARowsB, kColsBC,
hwy::platform::Now() - start_slow);
}
double min_elapsed = hwy::HighestValue<double>();
for (int rep = 0; rep < (compare_slow ? 1 : 3); ++rep) {
for (int rep = 0; rep < (want_bench ? 3 : 1); ++rep) {
const double start_tiled = hwy::platform::Now();
MatMul_4x4<kAdd>(kM, MakeMat(a->data(), kN), MakeMat(b_trans->data(), kN),
scale, kAdd ? add->data_scale1() : nullptr,
MakeMat(c.get(), kK), pool);
MatMul_4x4<kAdd>(kRowsAC, MakeMat(a->data(), kColsARowsB),
MakeMat(b_trans->data(), kColsARowsB), scale,
kAdd ? add->data_scale1() : nullptr,
MakeMat(c.get(), kColsBC), pool);
min_elapsed = HWY_MIN(min_elapsed, hwy::platform::Now() - start_tiled);
}
PrintSpeed("MatMul_4x4", kM, kN, kK, min_elapsed);
if (compare_slow) {
AssertClose(c_slow->data(), c.get(), kM * kK);
if (want_bench) {
PrintSpeed("MatMul_4x4", kRowsAC, kColsARowsB, kColsBC, min_elapsed);
}
AssertClose(kRowsAC, kColsARowsB, kColsBC, a->data(), b_trans->data(),
c_slow->data(), c.get());
}
void TestAllMatMul() {
@ -274,6 +275,7 @@ void TestAllMatMul() {
// large-scale test
TestMatMul<64, 24576, 3072, /*kAdd=*/false, F32, SFP>(pool);
TestMatMul<64, 3072, 24576, /*kAdd=*/false, F32, SFP>(pool);
// medium-sized square test
TestMatMul<512, 512, 512, /*kAdd=*/false, F32>(pool);
@ -283,7 +285,7 @@ void TestAllMatMul() {
TestMatMul<512, 512, 512, /*kAdd=*/false, F32, SFP>(pool);
TestMatMul<512, 512, 512, /*kAdd=*/true, BF16, SFP>(pool);
// minimal non-square test. kK must be at least 2 vectors.
// minimal non-square test. kColsARowsB must be at least 2 vectors.
TestMatMul<35, 128, 32, /*kAdd=*/false, F32>(pool);
TestMatMul<34, 128, 32, /*kAdd=*/true, BF16>(pool);
TestMatMul<33, 128, 32, /*kAdd=*/false, F32, BF16>(pool);
@ -316,129 +318,6 @@ void TestAllMatMul() {
TestMatMul<1, 128, 32, /*kAdd=*/true, BF16, SFP>(pool);
}
template <size_t kOuter, size_t kInner>
hwy::AlignedFreeUniquePtr<float[]> SimpleMatVecAdd(
const CompressedArray<float, kOuter * kInner>& mat,
const hwy::AlignedFreeUniquePtr<float[]>& vec,
const hwy::AlignedFreeUniquePtr<float[]>& add) {
hwy::AlignedFreeUniquePtr<float[]> uncompressed_mat =
hwy::AllocateAligned<float>(kOuter * kInner);
hwy::AlignedFreeUniquePtr<float[]> out = hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(uncompressed_mat && out);
Decompress(mat, 0, uncompressed_mat.get(), kOuter * kInner);
MulByConst(mat.scale(), uncompressed_mat.get(), kOuter * kInner);
for (size_t idx_row = 0; idx_row < kOuter; idx_row++) {
out[idx_row] = add[idx_row];
for (size_t idx_col = 0; idx_col < kInner; idx_col++) {
out[idx_row] +=
uncompressed_mat[kInner * idx_row + idx_col] * vec[idx_col];
}
}
return out;
}
template <typename MatT, size_t kOuter, size_t kInner>
CompressedArray<MatT, kOuter * kInner> GenerateMat(size_t offset,
hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
CompressedArray<MatT, kOuter * kInner> mat;
std::array<float, kOuter * kInner> content;
const float scale = 1.0f / kInner;
pool.Run(0, kOuter, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kInner; j++) {
content[i * kInner + j] =
static_cast<float>((i * kInner + j + offset) * scale);
}
});
Compress(content, ws, mat, pool);
mat.set_scale(1.9f); // Arbitrary value, different from 1.
return mat;
}
template <size_t length>
hwy::AlignedFreeUniquePtr<float[]> GenerateVec(size_t offset) {
hwy::AlignedFreeUniquePtr<float[]> vec = hwy::AllocateAligned<float>(length);
HWY_ASSERT(vec);
for (size_t idx = 0; idx < length; idx++) {
vec[idx] = static_cast<float>(idx + offset);
}
return vec;
}
void TestMatVecAdd() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat =
GenerateMat<float, kOuter, kInner>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> even_odd =
hwy::AllocateAligned<float>(kInner * pool.NumWorkers());
hwy::AlignedFreeUniquePtr<float[]> expected_out =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add);
hwy::AlignedFreeUniquePtr<float[]> actual_out =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add && even_odd && expected_out && actual_out);
MatVecAdd<kOuter, kInner>(mat, 0, vec.get(), add.get(), even_odd.get(),
actual_out.get(), pool);
AssertClose<kOuter>(actual_out, expected_out);
}
void TestTwoMatVecAdd() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat0 =
GenerateMat<float, kOuter, kInner>(0, pool);
CompressedArray<float, kOuter * kInner> mat1 =
GenerateMat<float, kOuter, kInner>(1, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add0 = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> add1 = GenerateVec<kOuter>(1);
hwy::AlignedFreeUniquePtr<float[]> expected_out0 =
SimpleMatVecAdd<kOuter, kInner>(mat0, vec, add0);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatVecAdd<kOuter, kInner>(mat1, vec, add1);
hwy::AlignedFreeUniquePtr<float[]> actual_out0 =
hwy::AllocateAligned<float>(kOuter);
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
expected_out1 && actual_out1);
TwoMatVecAdd<kOuter, kInner>(mat0, mat1, 0, vec.get(), add0.get(), add1.get(),
actual_out0.get(), actual_out1.get(), pool);
AssertClose<kOuter>(actual_out0, expected_out0);
AssertClose<kOuter>(actual_out1, expected_out1);
}
void TestTwoOfsMatVecAddLoop() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat =
GenerateMat<float, kOuter, kInner>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add0 = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> add1 = GenerateVec<kOuter>(1);
hwy::AlignedFreeUniquePtr<float[]> expected_out0 =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add0);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add1);
hwy::AlignedFreeUniquePtr<float[]> actual_out0 =
hwy::AllocateAligned<float>(kOuter);
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
expected_out1 && actual_out1);
TwoOfsMatVecAddLoop<kOuter, kInner>(mat, 0, 0, vec.get(), add0.get(),
add1.get(), actual_out0.get(),
actual_out1.get());
AssertClose<kOuter>(actual_out0, expected_out0);
AssertClose<kOuter>(actual_out1, expected_out1);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
@ -449,9 +328,6 @@ HWY_AFTER_NAMESPACE();
namespace gcpp {
HWY_BEFORE_TEST(MatmulTest);
HWY_EXPORT_AND_TEST_P(MatmulTest, TestAllMatMul);
HWY_EXPORT_AND_TEST_P(MatmulTest, TestMatVecAdd);
HWY_EXPORT_AND_TEST_P(MatmulTest, TestTwoMatVecAdd);
HWY_EXPORT_AND_TEST_P(MatmulTest, TestTwoOfsMatVecAddLoop);
HWY_AFTER_TEST();
} // namespace gcpp

357
ops/matvec-inl.h Normal file
View File

@ -0,0 +1,357 @@
// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Include guard for non-SIMD code.
#ifndef THIRD_PARTY_GEMMA_CPP_OPS_MATVEC_INL_H_
#define THIRD_PARTY_GEMMA_CPP_OPS_MATVEC_INL_H_
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include "compression/compress.h"
#include "compression/sfp.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/profiler.h"
#endif // THIRD_PARTY_GEMMA_CPP_OPS_MATVEC_INL_H_
// Include guard for (potentially) SIMD code.
#if defined(THIRD_PARTY_GEMMA_CPP_MATVEC_TOGGLE) == defined(HWY_TARGET_TOGGLE)
#ifdef THIRD_PARTY_GEMMA_CPP_MATVEC_TOGGLE
#undef THIRD_PARTY_GEMMA_CPP_MATVEC_TOGGLE
#else
#define THIRD_PARTY_GEMMA_CPP_MATVEC_TOGGLE
#endif
#include "compression/compress-inl.h"
#include "hwy/contrib/dot/dot-inl.h"
#include "hwy/contrib/math/math-inl.h"
#include "hwy/contrib/matvec/matvec-inl.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
namespace hn = hwy::HWY_NAMESPACE;
HWY_INLINE void ToEvenOddF32(const hwy::bfloat16_t* HWY_RESTRICT vec_aligned,
const size_t size, float* HWY_RESTRICT out) {
const hn::ScalableTag<float> df;
const hn::Repartition<hwy::bfloat16_t, decltype(df)> dbf16;
HWY_DASSERT(size % hn::Lanes(dbf16) == 0);
HWY_DASSERT(hn::IsAligned(df, vec_aligned));
for (size_t i = 0; i < size; i += hn::Lanes(dbf16)) {
const auto interleaved = hn::LoadU(dbf16, vec_aligned + i);
hn::Store(hn::PromoteEvenTo(df, interleaved), df, out + i);
hn::Store(hn::PromoteOddTo(df, interleaved), df, out + i + hn::Lanes(df));
}
}
HWY_INLINE void ToEvenOddF32(const float* HWY_RESTRICT vec_aligned,
const size_t size, float* HWY_RESTRICT out) {
const hn::ScalableTag<float> df;
using VF = hn::Vec<decltype(df)>;
HWY_DASSERT(size % (hn::Lanes(df) * 2) == 0);
HWY_DASSERT(hn::IsAligned(df, vec_aligned));
VF vec0, vec1;
for (size_t i = 0; i < size; i += hn::Lanes(df) * 2) {
hn::LoadInterleaved2(df, vec_aligned + i, vec0, vec1);
hn::Store(vec0, df, out + i);
hn::Store(vec1, df, out + i + hn::Lanes(df));
}
}
// Simple version without tiling nor threading, but two offsets/outputs and
// always with addition.
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void TwoOfsMatVecAddLoop(const ArrayT& mat, const size_t mat_ofs0,
const size_t mat_ofs1,
const VecT* HWY_RESTRICT vec_aligned,
const AddT* HWY_RESTRICT add0,
const AddT* HWY_RESTRICT add1,
float* HWY_RESTRICT out0,
float* HWY_RESTRICT out1) {
PROFILER_ZONE("TwoOfsMatVecAddLoop");
constexpr bool kVecEO = false;
const hn::ScalableTag<float> df;
for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) {
const size_t row_ofs0 = mat_ofs0 + (idx_row)*kInner;
const size_t row_ofs1 = mat_ofs1 + (idx_row)*kInner;
out0[idx_row] = hwy::ConvertScalarTo<float>(add0[idx_row]) +
Dot<kVecEO>(df, mat, row_ofs0, vec_aligned, kInner);
out1[idx_row] = hwy::ConvertScalarTo<float>(add1[idx_row]) +
Dot<kVecEO>(df, mat, row_ofs1, vec_aligned, kInner);
}
}
HWY_INLINE constexpr size_t MaxCols() {
// Vec + mat rows should fit into 32 KiB L1.
return 2048;
}
template <size_t kOuter>
HWY_INLINE constexpr size_t RowsPerStrip() {
// Aim for 128 work items to reduce pool overhead. Must be at least one
// vector; prefer a power of two for faster division.
constexpr size_t kLanes = hn::ScalableTag<float>().MaxLanes();
constexpr size_t kRowsPerStrip =
kOuter < 128 ? kLanes
: HWY_MAX(kLanes, 1ULL << hwy::FloorLog2(kOuter / 128));
return kRowsPerStrip;
}
namespace detail {
// For each i = [0, num_rows), compute partial (length `num_cols`) dot product
// of row i with `vec_aligned` and add into `out[i]`. The upper-left
// coordinate of the tile is r0, c0.
template <bool kVecEO, class DF, typename ArrayT, typename VecT>
HWY_INLINE void AccumulatePartialDotProducts(
DF df, const ArrayT& mat, size_t mat_ofs, size_t mat_stride, size_t r0,
size_t c0, size_t num_rows, size_t num_cols,
const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) {
for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) {
const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride;
out[idx_row] +=
Dot<kVecEO>(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
}
}
// Same as AccumulatePartialDotProducts, but sets out[i] to the first partial
// dot product + init (if kInit), which avoids having to zero-initialize and
// accumulate.
template <bool kVecEO, bool kInit, class DF, typename ArrayT, typename VecT,
typename InitT>
HWY_INLINE void SetFirstPartialDotProducts(DF df, const ArrayT& mat,
size_t mat_ofs, size_t mat_stride,
size_t r0, size_t c0,
size_t num_rows, size_t num_cols,
const VecT* HWY_RESTRICT vec_aligned,
const InitT* HWY_RESTRICT init,
float* HWY_RESTRICT out) {
for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) {
const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride;
if constexpr (kInit) {
out[idx_row] =
hwy::ConvertScalarTo<float>(init[idx_row + r0]) +
Dot<kVecEO>(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
} else {
out[idx_row] =
Dot<kVecEO>(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
}
}
}
// Adds together partial dot products for all tiles with the same r0 (a
// horizontal strip of the entire matrix); the result is the full dot product
// for rows r in [r0, r0 + num_rows) + optionally the add vector, which we
// store into in out[r - r0].
template <bool kVecEO, bool kAdd, class DF, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void FullDotProductsForStrip(DF df, const ArrayT& mat,
size_t mat_ofs, size_t mat_stride,
size_t r0, size_t num_rows,
const VecT* HWY_RESTRICT vec_aligned,
const AddT* HWY_RESTRICT add,
float* HWY_RESTRICT out) {
// Tall and skinny: set `out` to the single dot product.
if (mat_stride < MaxCols()) {
SetFirstPartialDotProducts<kVecEO, kAdd>(df, mat, mat_ofs, mat_stride, r0,
0, num_rows, mat_stride,
vec_aligned, add, out);
return;
}
// We have at least MaxCols, so start by setting `out` to that:
SetFirstPartialDotProducts<kVecEO, kAdd>(df, mat, mat_ofs, mat_stride, r0, 0,
num_rows, MaxCols(), vec_aligned,
add, out);
// For further multiples of MaxCols, accumulate. Remainders handled below.
size_t c0 = MaxCols();
for (; c0 <= mat_stride - MaxCols(); c0 += MaxCols()) {
AccumulatePartialDotProducts<kVecEO>(df, mat, mat_ofs, mat_stride, r0, c0,
num_rows, MaxCols(), vec_aligned, out);
}
if (c0 < mat_stride) { // Final cols
AccumulatePartialDotProducts<kVecEO>(df, mat, mat_ofs, mat_stride, r0, c0,
num_rows, mat_stride - c0, vec_aligned,
out);
}
}
template <bool kVecIsEvenOdd, bool kAdd, size_t kOuter, size_t kInner,
typename ArrayT, typename VecT, typename AddT>
HWY_INLINE void MatVecAddInner(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
const AddT* HWY_RESTRICT const add,
float* HWY_RESTRICT out, hwy::ThreadPool& pool) {
const hn::ScalableTag<float> df;
constexpr size_t kRowsPerStrip = RowsPerStrip<kOuter>();
constexpr size_t kNumStrips = kOuter / kRowsPerStrip;
// For each entire strip.
pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR {
PROFILER_ZONE("MatVec.lambda");
const size_t r0 = strip * kRowsPerStrip;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add,
out + r0);
});
// Remaining rows
const size_t r0 = kNumStrips * kRowsPerStrip;
if (r0 < kOuter) {
PROFILER_ZONE("MatVec remainder");
const size_t num_rows = kOuter - r0;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat, mat_ofs, kInner, r0, num_rows, vec_aligned, add, out + r0);
}
}
} // namespace detail
// Stores dot products of rows with `vec_aligned` + add the values from `add`
// (if kAdd), then stores them to `out`.
template <bool kAdd, size_t kOuter, size_t kInner, typename ArrayT,
typename VecT, typename AddT>
HWY_INLINE void MatVecT(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
const AddT* HWY_RESTRICT const add,
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
PROFILER_ZONE("MatVecAdd");
#if !defined(HWY_NATIVE_DOT_BF16) || !HWY_NATIVE_DOT_BF16
using MatT = typename ArrayT::value_type;
// Sfp -> float does not benefit enough to recoup the cost of ToEvenOddF32.
if constexpr (CompressTraits<MatT>::kSupportsEvenOdd &&
hwy::IsSameEither<VecT, float, hwy::bfloat16_t>() &&
!(hwy::IsSame<MatT, SfpStream>() &&
hwy::IsSame<VecT, float>())) {
ToEvenOddF32(vec_aligned, kInner, even_odd);
detail::MatVecAddInner</*kVecIsEvenOdd=*/true, kAdd, kOuter, kInner>(
mat, mat_ofs, even_odd, add, out, pool);
return;
}
#else
(void)even_odd;
#endif
detail::MatVecAddInner</*kVecIsEvenOdd=*/false, kAdd, kOuter, kInner>(
mat, mat_ofs, vec_aligned, add, out, pool);
}
// With addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT,
typename AddT>
HWY_INLINE void MatVecAdd(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
const AddT* HWY_RESTRICT const add,
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
return MatVecT</*kAdd=*/true, kOuter, kInner>(mat, mat_ofs, vec_aligned, add,
even_odd, out, pool);
}
// Without addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT>
HWY_INLINE void MatVec(const ArrayT& mat, const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
hwy::ThreadPool& pool) {
MatVecT</*kAdd=*/false, kOuter, kInner>(mat, mat_ofs, vec_aligned,
/*add=*/static_cast<VecT*>(nullptr),
even_odd, out, pool);
}
// Two matrices, same vector
template <bool kAdd, size_t kOuter, size_t kInner, typename ArrayT,
typename VecT, typename AddT>
HWY_NOINLINE void TwoMatVecT(const ArrayT& mat0, const ArrayT& mat1,
const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned,
const AddT* HWY_RESTRICT add0,
const AddT* HWY_RESTRICT add1,
float* HWY_RESTRICT out0, float* HWY_RESTRICT out1,
hwy::ThreadPool& pool) {
PROFILER_ZONE("TwoMatVecAdd");
const hn::ScalableTag<float> df;
constexpr size_t kRowsPerStrip = RowsPerStrip<kOuter>();
constexpr size_t kNumStrips = kOuter / kRowsPerStrip;
constexpr bool kVecIsEvenOdd = false;
// For each entire strip.
pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR {
PROFILER_ZONE("TwoMatVec.lambda");
const size_t r0 = strip * kRowsPerStrip;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat0, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add0,
out0 + r0);
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat1, mat_ofs, kInner, r0, kRowsPerStrip, vec_aligned, add1,
out1 + r0);
});
// Remaining rows
const size_t r0 = kNumStrips * kRowsPerStrip;
if (r0 < kOuter) {
PROFILER_ZONE("TwoMatVec remainder");
const size_t num_rows = kOuter - r0;
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat0, mat_ofs, kInner, r0, num_rows, vec_aligned, add0, out0 + r0);
detail::FullDotProductsForStrip<kVecIsEvenOdd, kAdd>(
df, mat1, mat_ofs, kInner, r0, num_rows, vec_aligned, add1, out1 + r0);
}
}
// With addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT,
typename AddT>
HWY_NOINLINE void TwoMatVecAdd(
const ArrayT& mat0, const ArrayT& mat1, const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned, const AddT* HWY_RESTRICT add0,
const AddT* HWY_RESTRICT add1, float* HWY_RESTRICT out0,
float* HWY_RESTRICT out1, hwy::ThreadPool& pool) {
return TwoMatVecT</*kAdd=*/true, kOuter, kInner>(
mat0, mat1, mat_ofs, vec_aligned, add0, add1, out0, out1, pool);
}
// Without addition
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT>
HWY_NOINLINE void TwoMatVec(const ArrayT& mat0, const ArrayT& mat1,
const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned,
float* HWY_RESTRICT out0, float* HWY_RESTRICT out1,
hwy::ThreadPool& pool) {
TwoMatVecT</*kAdd=*/false, kOuter, kInner, ArrayT, VecT, VecT>(
mat0, mat1, mat_ofs, vec_aligned, /*add0=*/nullptr, /*add1=*/nullptr,
out0, out1, pool);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#endif // NOLINT

199
ops/matvec_test.cc Normal file
View File

@ -0,0 +1,199 @@
// Copyright 2023 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef HWY_DISABLED_TARGETS
// Exclude HWY_SCALAR due to 2x bf16 -> f32.
#define HWY_DISABLED_TARGETS HWY_SCALAR
#endif
#include <stddef.h>
#include <stdio.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <memory>
#include "compression/compress.h"
#include "hwy/aligned_allocator.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "ops/matvec_test.cc" // NOLINT
// clang-format on
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
// After highway.h
#include "ops/matvec-inl.h"
#include "ops/ops-inl.h" // MulByConst
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
template <size_t kOuter, size_t kInner>
hwy::AlignedFreeUniquePtr<float[]> SimpleMatVecAdd(
const CompressedArray<float, kOuter * kInner>& mat,
const hwy::AlignedFreeUniquePtr<float[]>& vec,
const hwy::AlignedFreeUniquePtr<float[]>& add) {
hwy::AlignedFreeUniquePtr<float[]> uncompressed_mat =
hwy::AllocateAligned<float>(kOuter * kInner);
hwy::AlignedFreeUniquePtr<float[]> out = hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(uncompressed_mat && out);
Decompress(mat, 0, uncompressed_mat.get(), kOuter * kInner);
MulByConst(mat.scale(), uncompressed_mat.get(), kOuter * kInner);
for (size_t idx_row = 0; idx_row < kOuter; idx_row++) {
out[idx_row] = add[idx_row];
for (size_t idx_col = 0; idx_col < kInner; idx_col++) {
out[idx_row] +=
uncompressed_mat[kInner * idx_row + idx_col] * vec[idx_col];
}
}
return out;
}
template <typename MatT, size_t kOuter, size_t kInner>
CompressedArray<MatT, kOuter * kInner> GenerateMat(size_t offset,
hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
CompressedArray<MatT, kOuter * kInner> mat;
std::array<float, kOuter * kInner> content;
const float scale = 1.0f / kInner;
pool.Run(0, kOuter, [&](const size_t i, size_t /*thread*/) {
for (size_t j = 0; j < kInner; j++) {
content[i * kInner + j] =
static_cast<float>((i * kInner + j + offset) * scale);
}
});
Compress(content, ws, mat, pool);
mat.set_scale(1.9f); // Arbitrary value, different from 1.
return mat;
}
template <size_t length>
hwy::AlignedFreeUniquePtr<float[]> GenerateVec(size_t offset) {
hwy::AlignedFreeUniquePtr<float[]> vec = hwy::AllocateAligned<float>(length);
HWY_ASSERT(vec);
for (size_t idx = 0; idx < length; idx++) {
vec[idx] = static_cast<float>(idx + offset);
}
return vec;
}
template <size_t length>
void AssertClose(const hwy::AlignedFreeUniquePtr<float[]>& a,
const hwy::AlignedFreeUniquePtr<float[]>& b) {
for (size_t idx = 0; idx < length; idx++) {
const float rel_abs_delta = std::abs(a[idx] - b[idx]) /
std::max(std::abs(a[idx]), std::abs(b[idx]));
EXPECT_LT(rel_abs_delta, 2e-6)
<< "a[" << idx << "]=" << a[idx] << ", b[" << idx << "]=" << b[idx];
}
}
void TestMatVecAdd() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat =
GenerateMat<float, kOuter, kInner>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> even_odd =
hwy::AllocateAligned<float>(kInner * pool.NumWorkers());
hwy::AlignedFreeUniquePtr<float[]> expected_out =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add);
hwy::AlignedFreeUniquePtr<float[]> actual_out =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add && even_odd && expected_out && actual_out);
MatVecAdd<kOuter, kInner>(mat, 0, vec.get(), add.get(), even_odd.get(),
actual_out.get(), pool);
AssertClose<kOuter>(actual_out, expected_out);
}
void TestTwoMatVecAdd() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat0 =
GenerateMat<float, kOuter, kInner>(0, pool);
CompressedArray<float, kOuter * kInner> mat1 =
GenerateMat<float, kOuter, kInner>(1, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add0 = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> add1 = GenerateVec<kOuter>(1);
hwy::AlignedFreeUniquePtr<float[]> expected_out0 =
SimpleMatVecAdd<kOuter, kInner>(mat0, vec, add0);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatVecAdd<kOuter, kInner>(mat1, vec, add1);
hwy::AlignedFreeUniquePtr<float[]> actual_out0 =
hwy::AllocateAligned<float>(kOuter);
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
expected_out1 && actual_out1);
TwoMatVecAdd<kOuter, kInner>(mat0, mat1, 0, vec.get(), add0.get(), add1.get(),
actual_out0.get(), actual_out1.get(), pool);
AssertClose<kOuter>(actual_out0, expected_out0);
AssertClose<kOuter>(actual_out1, expected_out1);
}
void TestTwoOfsMatVecAddLoop() {
hwy::ThreadPool pool(hwy::ThreadPool::MaxThreads());
constexpr size_t kOuter = 128 * 3;
constexpr size_t kInner = 128 * 5;
CompressedArray<float, kOuter * kInner> mat =
GenerateMat<float, kOuter, kInner>(0, pool);
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
hwy::AlignedFreeUniquePtr<float[]> add0 = GenerateVec<kOuter>(0);
hwy::AlignedFreeUniquePtr<float[]> add1 = GenerateVec<kOuter>(1);
hwy::AlignedFreeUniquePtr<float[]> expected_out0 =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add0);
hwy::AlignedFreeUniquePtr<float[]> expected_out1 =
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add1);
hwy::AlignedFreeUniquePtr<float[]> actual_out0 =
hwy::AllocateAligned<float>(kOuter);
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
hwy::AllocateAligned<float>(kOuter);
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
expected_out1 && actual_out1);
TwoOfsMatVecAddLoop<kOuter, kInner>(mat, 0, 0, vec.get(), add0.get(),
add1.get(), actual_out0.get(),
actual_out1.get());
AssertClose<kOuter>(actual_out0, expected_out0);
AssertClose<kOuter>(actual_out1, expected_out1);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_BEFORE_TEST(MatVecTest);
HWY_EXPORT_AND_TEST_P(MatVecTest, TestMatVecAdd);
HWY_EXPORT_AND_TEST_P(MatVecTest, TestTwoMatVecAdd);
HWY_EXPORT_AND_TEST_P(MatVecTest, TestTwoOfsMatVecAddLoop);
HWY_AFTER_TEST();
} // namespace gcpp
#endif