Factor out DecodeStepT from GenerateT into a separate function.

This will be useful for adding sampling functionality like beam decoding, parallel sampling, cot decoding (as described in the [Chain-of-Thought Reasoning Without Prompting paper](https://arxiv.org/abs/2402.10200))

PiperOrigin-RevId: 725151530
This commit is contained in:
Apoorv Reddy 2025-02-10 03:52:29 -08:00 committed by Copybara-Service
parent b0fe9a43e6
commit 9b3e7ea8a2
1 changed files with 54 additions and 31 deletions

View File

@ -27,6 +27,7 @@
#include "gemma/common.h" #include "gemma/common.h"
#include "gemma/configs.h" #include "gemma/configs.h"
#include "gemma/gemma.h" #include "gemma/gemma.h"
#include "gemma/kv_cache.h"
#include "gemma/weights.h" #include "gemma/weights.h"
#include "paligemma/image.h" #include "paligemma/image.h"
#include "util/allocator.h" #include "util/allocator.h"
@ -1217,6 +1218,54 @@ HWY_INLINE SampleFunc ChooseSampleFunc(const RuntimeConfig& runtime_config) {
}; };
} }
template <typename T>
// Runs one decode step for all the queries in the batch. Returns true if all
// queries are at <end_of_sentence>.
bool DecodeStepT(const ModelWeightsPtrs<T>& weights,
const RuntimeConfig& runtime_config,
const QueriesPromptTokens& queries_prompt,
const size_t query_idx_start, const KVCaches& kv_caches,
const QueriesPos& queries_prefix_end,
const hwy::Divisor div_seq_len, const size_t vocab_size,
const SampleFunc& sample_token, double prefill_start,
double gen_start, Activations& activations,
TokenStreamer& token_streamer, std::vector<int>& gen_tokens,
TimingInfo& timing_info,
const QueriesMutablePos& queries_mutable_pos) {
const size_t num_queries = queries_prompt.size();
// Decode generates one token per query and increments
// queries_mutable_pos.
Transformer(QueriesToken(gen_tokens.data(), num_queries), queries_mutable_pos,
queries_prefix_end, weights, activations, div_seq_len, kv_caches,
runtime_config.layers_output,
runtime_config.activations_observer);
// queries_pos are incremented by Transformer.
bool all_queries_eos = true;
{
PROFILER_ZONE("Gen.EmbeddingMatmul");
// Compute logits from last layer activations.
MatMul(ConstMatFromBatch(num_queries, activations.x),
ConstMatFromWeights(weights.embedder_input_embedding),
/*add=*/nullptr, *activations.env,
RowPtrFromBatch(activations.logits));
}
PROFILER_ZONE("Gen.Softcap+Sample+Stream");
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
float* HWY_RESTRICT logits = activations.logits.Batch(query_idx);
MaybeLogitsSoftCap(weights.weights_config.final_cap, logits, vocab_size);
const TokenAndProb tp = sample_token(logits, vocab_size);
timing_info.NotifyGenerated(prefill_start, gen_start);
const bool is_eos =
token_streamer(query_idx_start + query_idx,
queries_mutable_pos[query_idx], tp.token, tp.prob);
all_queries_eos &= is_eos;
gen_tokens[query_idx] = is_eos ? runtime_config.eos_id : tp.token;
}
return all_queries_eos;
}
// Generates one continuation for each query in `queries_prompt`, which is one // Generates one continuation for each query in `queries_prompt`, which is one
// qbatch whose size is at most the `batch_size` passed to // qbatch whose size is at most the `batch_size` passed to
// `activations.Allocate`. // `activations.Allocate`.
@ -1310,37 +1359,11 @@ void GenerateT(const ModelWeightsStorage& model, Activations& activations,
const size_t vocab_size = model.Config().vocab_size; const size_t vocab_size = model.Config().vocab_size;
const double gen_start = hwy::platform::Now(); const double gen_start = hwy::platform::Now();
for (size_t gen = 0; gen < max_generated_tokens; ++gen) { for (size_t gen = 0; gen < max_generated_tokens; ++gen) {
// Decode generates one token per query and increments bool all_queries_eos = DecodeStepT<T>(
// queries_mutable_pos. weights, runtime_config, queries_prompt, query_idx_start, kv_caches,
Transformer(QueriesToken(gen_tokens.data(), num_queries), queries_prefix_end, div_seq_len, vocab_size, sample_token,
queries_mutable_pos, queries_prefix_end, weights, activations, prefill_start, gen_start, activations, token_streamer, gen_tokens,
div_seq_len, kv_caches, runtime_config.layers_output, timing_info, queries_mutable_pos);
runtime_config.activations_observer);
// queries_pos are incremented by Transformer.
bool all_queries_eos = true;
{
PROFILER_ZONE("Gen.EmbeddingMatmul");
// Compute logits from last layer activations.
MatMul(ConstMatFromBatch(num_queries, activations.x),
ConstMatFromWeights(weights.embedder_input_embedding),
/*add=*/nullptr, *activations.env,
RowPtrFromBatch(activations.logits));
}
PROFILER_ZONE("Gen.Softcap+Sample+Stream");
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
float* HWY_RESTRICT logits = activations.logits.Batch(query_idx);
MaybeLogitsSoftCap(weights.weights_config.final_cap, logits,
vocab_size);
const TokenAndProb tp = sample_token(logits, vocab_size);
timing_info.NotifyGenerated(prefill_start, gen_start);
const bool is_eos =
token_streamer(query_idx_start + query_idx,
queries_mutable_pos[query_idx], tp.token, tp.prob);
all_queries_eos &= is_eos;
gen_tokens[query_idx] = is_eos ? runtime_config.eos_id : tp.token;
}
if (all_queries_eos) break; if (all_queries_eos) break;
} // foreach token to generate } // foreach token to generate
timing_info.NotifyGenerateDone(gen_start); timing_info.NotifyGenerateDone(gen_start);