-467ms startup: parallel Reshape

Also split Softmax into Argmax helper, add comments;
add profiler zones + fix IDE warning

PiperOrigin-RevId: 680954573
This commit is contained in:
Jan Wassenberg 2024-10-01 04:11:00 -07:00 committed by Copybara-Service
parent d83ad76679
commit 7d9fcda0d8
4 changed files with 48 additions and 23 deletions

View File

@ -1292,13 +1292,16 @@ void GenerateT(const ByteStorageT& weights_u8, Activations& activations,
// queries_pos are incremented by Transformer.
bool all_queries_eos = true;
PROFILER_ZONE("Gen.Embedding");
{
PROFILER_ZONE("Gen.EmbeddingMatmul");
// Compute logits from last layer activations.
MatMul</*kAdd=*/false>(
num_queries, ConstMat(activations.x.All(), kModelDim),
ConstMat(weights.embedder_input_embedding.data(), kModelDim),
weights.embedder_input_embedding.scale(), /*add=*/nullptr,
activations.env, MutableMat(activations.logits.All(), kVocabSize));
}
PROFILER_ZONE("Gen.Softcap+Sample+Stream");
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
float* HWY_RESTRICT logits = activations.logits.Batch(query_idx);
MaybeLogitsSoftCap(TConfig::kFinalCap, logits, kVocabSize);

View File

@ -76,7 +76,7 @@ struct LoadCompressedWeightsT {
}
{
PROFILER_ZONE("Startup.Reshape");
c_weights->Reshape();
c_weights->Reshape(pool);
}
return c_weights_u8;
}
@ -90,7 +90,8 @@ ByteStorageT LoadCompressedWeights(const Path& weights, Model model_type,
}
namespace {
void LogVec(const char* name, const float* data, size_t len) {
// For reasons unknown, this is shown as potentially unused in the IDE.
void HWY_MAYBE_UNUSED LogVec(const char* name, const float* data, size_t len) {
hwy::Stats stats;
for (size_t i = 0; i < len; ++i) {
stats.Notify(data[i]);

View File

@ -210,10 +210,10 @@ struct CompressedWeights {
explicit CompressedWeights(hwy::ThreadPool& pool) : c_layer_ptrs(pool) {}
// Called by weights.cc after ForEachTensor.
void Reshape() {
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
void Reshape(hwy::ThreadPool& pool) {
pool.Run(0, TConfig::kLayers, [this](uint64_t layer, size_t /*thread*/) {
GetLayer(layer)->Reshape();
}
});
}
void ZeroInit() {
@ -279,7 +279,7 @@ struct ReshapeCompressedWeights {
void operator()(ByteStorageT& weights_u8, hwy::ThreadPool& pool) const {
CompressedWeights<TConfig>& weights =
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
weights.Reshape();
weights.Reshape(pool);
}
};

View File

@ -601,6 +601,7 @@ HWY_INLINE float Sum(D d, const VT* HWY_RESTRICT vec, size_t num) {
return DecompressAndCall(d_raw, MakeSpan(vec, num), SumKernelDefault<VT>());
}
// See below for a specialized version for top-1 sampling.
static HWY_NOINLINE void Softmax(float* HWY_RESTRICT x, const size_t size,
const size_t mask_pos) {
HWY_DASSERT(size != 0);
@ -644,12 +645,14 @@ static HWY_INLINE HWY_MAYBE_UNUSED void Softmax(float* HWY_RESTRICT x,
Softmax(x, size, size);
}
// Returns argmax of softmax and its probability. This overwrites `x`, but not
// with normalized probabilities. Only equivalent to `Softmax` + `sample_func`
// if `kTopK` == 1. This is worthwhile because `num` is
// typically `kVocabSize` == 256K, and this avoids writing that many, and then
// scanning them again for the max.
static HWY_MAYBE_UNUSED TokenAndProb Top1OfSoftmax(float* HWY_RESTRICT x,
// Note: https://arxiv.org/pdf/2001.04438 proposes to replace the three max /
// exp / mul passes with two passes, both of which compute Exp. This is
// reportedly only faster for very large arrays, larger even than our 256K
// vocab size. We instead fuse the subsequent sampling pass into the softmax,
// which already knows the max value which top-1 sampling would again seek.
// Returns the argmax and x[argmax].
static HWY_INLINE TokenAndProb ArgmaxAndMax(const float* HWY_RESTRICT x,
const size_t num) {
namespace hn = hwy::HWY_NAMESPACE;
using D = hn::ScalableTag<float>;
@ -679,18 +682,36 @@ static HWY_MAYBE_UNUSED TokenAndProb Top1OfSoftmax(float* HWY_RESTRICT x,
argmax0 = hn::IfThenElse(hn::RebindMask(di, gt0), vi0, argmax0);
argmax1 = hn::IfThenElse(hn::RebindMask(di, gt1), vi1, argmax1);
}
// Combine the two vectors
const M gt0 = hn::Gt(max0, max1);
max0 = hn::IfThenElse(gt0, max0, max1);
argmax0 = hn::IfThenElse(hn::RebindMask(di, gt0), argmax0, argmax1);
// Reduce to the global max
const V max = hn::MaxOfLanes(d, max0); // broadcasts
const V* pmax = &max;
// Argmax = lowest-indexed lane equal to the global max
const size_t lane = hn::FindKnownFirstTrue(d, hn::Eq(max, max0));
const TI argmax = hn::ExtractLane(argmax0, lane);
return TokenAndProb{.token = argmax, .prob = hn::GetLane(max)};
}
// Returns argmax of softmax and its probability. This overwrites `x`, but not
// with normalized probabilities. Only equivalent to `Softmax` + `sample_func`
// if `kTopK` == 1. This is worthwhile because `num` is typically `kVocabSize`
// == 256K, and this avoids writing and then scanning again for the max.
static HWY_MAYBE_UNUSED TokenAndProb Top1OfSoftmax(float* HWY_RESTRICT x,
const size_t num) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<float> d;
using V = hn::Vec<decltype(d)>;
const TokenAndProb argmax = ArgmaxAndMax(x, num);
// Subtract max (avoid precision loss for large exponents) and exponentiate.
const V max = hn::Set(d, argmax.prob);
const V* pmax = &max;
hn::Transform(d, x, num, [pmax](const auto d, const V value) HWY_ATTR {
if constexpr (HWY_TARGET & HWY_ALL_SVE) {
// Temporary workaround for buggy SVE codegen: avoid inlined Exp().
@ -705,8 +726,8 @@ static HWY_MAYBE_UNUSED TokenAndProb Top1OfSoftmax(float* HWY_RESTRICT x,
// normalized probabilities from 1E-7 to 5E-8, but actually also changes the
// generated text after a few hundred tokens.
const float sum_exp = Sum(d, x, num);
const float prob = x[argmax] / sum_exp;
return TokenAndProb{.token = argmax, .prob = prob};
const float prob = x[argmax.token] / sum_exp;
return TokenAndProb{.token = argmax.token, .prob = prob};
}
static HWY_NOINLINE void LogitsSoftCap(const float cap, float* HWY_RESTRICT x,