Generic MHA/MQA/GQA implementation

PiperOrigin-RevId: 636937885
This commit is contained in:
Paul Chang 2024-05-24 09:05:16 -07:00 committed by Copybara-Service
parent 93c0088646
commit 419dc34ed5
1 changed files with 48 additions and 50 deletions

View File

@ -762,68 +762,66 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t num_tokens, size_t layer,
}
};
if constexpr (kHeads == kKVHeads) {
// Multi-Head Attention
static_assert(TConfig::kInterleaveQKV);
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
float* x = activations.pre_att_rms_out.data() + batch_idx * kModelDim;
const float* x = activations.pre_att_rms_out.data() + batch_idx * kModelDim;
// QKV projections:
if constexpr (kHeads == kKVHeads) {
// Multi-Head Attention calculates qkv using q as scratch space.
static_assert(TConfig::kInterleaveQKV);
float* HWY_RESTRICT qkv =
activations.q.data() + batch_idx * kHeads * kQKVDim * 3;
MatVec<kHeads * kQKVDim * 3, kModelDim>(
layer_weights->qkv_einsum_w, 0, x, activations.even_odd.data(), qkv,
MatVec<kHeads * kQKVDim * 3, kModelDim>(layer_weights->qkv_einsum_w, 0, x,
activations.even_odd.data(), qkv,
pool);
}
const size_t num_tasks = kHeads * num_tokens;
pool.Run(0, num_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR {
const size_t head = task % kHeads;
const size_t batch_idx = task / kHeads;
const size_t pos = batch_start + batch_idx;
float* HWY_RESTRICT q =
activations.q.data() + (batch_idx * kHeads + head) * kQKVDim * 3;
const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize);
const size_t kv_offset = cache_pos * kCachePosSize +
layer * kCacheLayerSize + head * kQKVDim * 2;
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset;
memcpy(kv, q + kQKVDim, 2 * kQKVDim * sizeof(float));
Rope(kv, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
});
pool.Run(0, num_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR {
const size_t head = task % kHeads;
const size_t batch_idx = task / kHeads;
float* HWY_RESTRICT q =
activations.q.data() + (batch_idx * kHeads + head) * kQKVDim * 3;
Attn(q, head, head * kQKVDim * 2, batch_idx, thread);
});
} else {
// Multi-Query Attention
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
const size_t pos = batch_start + batch_idx;
float* x = activations.pre_att_rms_out.data() + batch_idx * kModelDim;
float* HWY_RESTRICT q =
activations.q.data() + batch_idx * kHeads * kQKVDim;
MatVec<kHeads * kQKVDim, kModelDim>(layer_weights->qkv_einsum_w, 0, x,
activations.even_odd.data(), q, pool);
const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize);
const size_t kv_offset = cache_pos * kCachePosSize +
layer * kCacheLayerSize;
const size_t kv_offset =
cache_pos * kCachePosSize + layer * kCacheLayerSize;
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset;
MatVec<kQKVDim * 2, kModelDim>(layer_weights->qkv_einsum_w,
kHeads * kQKVDim * kModelDim, x,
MatVec<kKVHeads * kQKVDim * 2, kModelDim>(
layer_weights->qkv_einsum_w, kHeads * kQKVDim * kModelDim, x,
activations.even_odd.data(), kv, pool);
Rope(kv, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
}
const size_t num_tasks = kHeads * num_tokens;
pool.Run(0, num_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR {
}
// Positional encodings for k:
const size_t num_kv_tasks = kKVHeads * num_tokens;
pool.Run(0, num_kv_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR {
const size_t head = task % kKVHeads;
const size_t batch_idx = task / kKVHeads;
const size_t pos = batch_start + batch_idx;
const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize);
const size_t kv_offset = cache_pos * kCachePosSize +
layer * kCacheLayerSize + head * kQKVDim * 2;
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset;
if constexpr (kHeads == kKVHeads) {
// For MHA, copy kv into the KV cache from scratch space (see above).
const float* HWY_RESTRICT q =
activations.q.data() + (batch_idx * kHeads + head) * kQKVDim * 3;
memcpy(kv, q + kQKVDim, 2 * kQKVDim * sizeof(float));
}
Rope(kv, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
});
static_assert((TConfig::kHeads % TConfig::kKVHeads) == 0,
"query heads must be a multiple of key-value heads");
static constexpr size_t kGroupHeads = TConfig::kHeads / TConfig::kKVHeads;
static constexpr size_t kQOffsetScale = (kHeads == kKVHeads) ? 3 : 1;
const size_t num_q_tasks = kHeads * num_tokens;
pool.Run(0, num_q_tasks, [&](const uint64_t task, size_t thread) HWY_ATTR {
const size_t head = task % kHeads;
const size_t batch_idx = task / kHeads;
float* HWY_RESTRICT q =
activations.q.data() + batch_idx * kHeads * kQKVDim;
Attn(q + head * kQKVDim, head, 0, batch_idx, thread);
const size_t head_offset = (head / kGroupHeads) * kQKVDim * 2;
float* HWY_RESTRICT q = activations.q.data() + (batch_idx * kHeads + head) *
kQKVDim * kQOffsetScale;
Attn(q, head, head_offset, batch_idx, thread);
});
}
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
// TODO(szabadka) Use a single MatVecAdd like in GriffinRecurrent() after