Fix bench_matmul perf regression: A input should be padded

PiperOrigin-RevId: 781976414
This commit is contained in:
Jan Wassenberg 2025-07-11 07:35:52 -07:00 committed by Copybara-Service
parent 4bc44d5678
commit 349c86f2d9
4 changed files with 27 additions and 17 deletions

View File

@ -69,45 +69,51 @@ void ForeachPackedAndRawType() {
// Generates inputs: deterministic, within max SfpStream range.
template <typename MatT>
MatStorageT<MatT> GenerateMat(const Extents2D& extents, hwy::ThreadPool& pool) {
MatStorageT<MatT> GenerateMat(const Extents2D& extents, MatPadding padding,
hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
ws.tls.resize(pool.NumWorkers());
MatStorageT<float> raw("raw", extents, MatPadding::kPacked);
MatStorageT<MatT> compressed("mat", extents, MatPadding::kPacked);
MatStorageT<MatT> compressed("mat", extents, padding);
const float scale = SfpStream::kMax / extents.Area();
pool.Run(0, extents.rows, [&](const size_t r, size_t /*thread*/) {
pool.Run(0, extents.rows, [&](const size_t r, size_t thread) {
float* HWY_RESTRICT row = raw.Row(r);
for (size_t c = 0; c < extents.cols; c++) {
float f = static_cast<float>(r * extents.cols + c) * scale;
if ((r + c) & 1) f = -f; // Also generate some negative values.
row[c] = f;
}
Compress(raw.Row(r), raw.Cols(), ws.tls[thread],
MakeSpan(compressed.Row(r), compressed.Cols()),
/*packed_ofs=*/0);
});
Compress(raw.PackedScale1(), raw.Extents().Area(), ws, compressed.Span(),
/*packed_ofs=*/0, pool);
compressed.SetScale(0.6f); // Arbitrary value, different from 1.
return compressed;
}
// `extents` describes the transposed matrix.
// Same, but `extents` describes the transposed matrix.
template <typename MatT>
MatStorageT<MatT> GenerateTransposedMat(const Extents2D extents,
MatPadding padding,
hwy::ThreadPool& pool) {
gcpp::CompressWorkingSet ws;
ws.tls.resize(pool.NumWorkers());
MatStorageT<float> raw("raw", extents, MatPadding::kPacked);
MatStorageT<MatT> compressed("trans", extents, MatPadding::kPacked);
MatStorageT<MatT> compressed("trans", extents, padding);
const float scale = SfpStream::kMax / extents.Area();
pool.Run(0, extents.rows, [&](const size_t r, size_t /*thread*/) {
pool.Run(0, extents.rows, [&](const size_t r, size_t thread) {
float* HWY_RESTRICT row = raw.Row(r);
for (size_t c = 0; c < extents.cols; c++) {
float f = static_cast<float>(c * extents.rows + r) * scale;
if ((r + c) & 1) f = -f; // Also generate some negative values.
row[c] = f;
}
Compress(raw.Row(r), raw.Cols(), ws.tls[thread],
MakeSpan(compressed.Row(r), compressed.Cols()),
/*packed_ofs=*/0);
});
Compress(raw.PackedScale1(), raw.Extents().Area(), ws, compressed.Span(),
/*packed_ofs=*/0, pool);
// Arbitrary value, different from 1, must match `GenerateMat`.
compressed.SetScale(0.6f);
return compressed;

View File

@ -89,12 +89,14 @@ void BenchMatMul(size_t M, size_t K, size_t N, bool add, MatMulEnv& env) {
MatStorageT<float> add_storage("add", Extents2D(), MatPadding::kPacked);
if (add) {
add_storage = GenerateMat<float>(Extents2D(1, N), pool);
add_storage =
GenerateMat<float>(Extents2D(1, N), MatPadding::kPacked, pool);
add_storage.SetScale(1.0f);
}
MatStorageT<TA> a = GenerateMat<TA>(A_extents, pool);
MatStorageT<TB> b_trans = GenerateTransposedMat<TB>(B_extents, pool);
MatStorageT<TA> a = GenerateMat<TA>(A_extents, MatPadding::kOdd, pool);
MatStorageT<TB> b_trans =
GenerateTransposedMat<TB>(B_extents, MatPadding::kOdd, pool);
const float* add_row = add ? add_storage.PackedScale1() : nullptr;

View File

@ -1298,7 +1298,7 @@ struct MMImpl {
// `K = B.Cols()`, which must match `A.Cols()`, is the number
// of rows in the original B. `N = C.Cols()` must be a multiple of 4. There
// are no other restrictions on shape, though performance is better when `M % 4
// == 0` or `M <= 4`.
// == 0` or `M <= 4`, and when A is padded (`!A.IsPacked()`).
//
// NOTE: if A and/or B are BF16 and padded, the interval `[Cols(),
// hwy::RoundUpTo(Cols(), hn::Lanes(dbf))` must be zero-initialized to match

View File

@ -219,14 +219,16 @@ void TestMatMul(size_t rows_ac, size_t cols_a_rows_b, size_t cols_bc, bool add,
const Extents2D B_extents(cols_bc, cols_a_rows_b); // already transposed
const Extents2D C_extents(rows_ac, cols_bc);
MatStorageT<TA> A(GenerateMat<TA>(A_extents, pool));
MatStorageT<TB> BT(GenerateTransposedMat<TB>(B_extents, pool));
MatStorageT<TA> A(GenerateMat<TA>(A_extents, MatPadding::kOdd, pool));
// Must be packed because we call Span() on it.
MatStorageT<TB> BT(
GenerateTransposedMat<TB>(B_extents, MatPadding::kPacked, pool));
MatStorageT<TC> C_slow("C_slow", C_extents, MatPadding::kOdd);
MatStorageT<TC> C("C", C_extents, MatPadding::kOdd);
C.AllocateAndAttachRowPtrs(env.row_ptrs);
MatStorageT<float> add_storage =
add ? GenerateMat<float>(Extents2D(1, cols_bc), pool)
add ? GenerateMat<float>(Extents2D(1, cols_bc), MatPadding::kPacked, pool)
: MatStorageT<float>("add", Extents2D(), MatPadding::kPacked);
add_storage.SetScale(1.0f);
const float* add_row = add ? add_storage.PackedScale1() : nullptr;