mirror of https://github.com/google/gemma.cpp.git
Extends Transformer() to prepare for batched processing.
PiperOrigin-RevId: 642603025
This commit is contained in:
parent
2a0e6ee976
commit
1ac9857014
147
gemma/gemma.cc
147
gemma/gemma.cc
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
// Compiles this file for multiple architectures via "foreach_target.h", to
|
||||
// which we pass the filename via macro 'argument'.
|
||||
#include <cstdio>
|
||||
#undef HWY_TARGET_INCLUDE
|
||||
#define HWY_TARGET_INCLUDE "gemma/gemma.cc" // NOLINT
|
||||
#include "hwy/foreach_target.h" // IWYU pragma: keep
|
||||
|
|
@ -592,16 +593,15 @@ HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
|
|||
pool.Run(
|
||||
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
|
||||
const int token = tokens[token_idx];
|
||||
HWY_ASSERT(token >= 0);
|
||||
HWY_ASSERT(token < TConfig::kVocabSize);
|
||||
HWY_DASSERT(token >= 0);
|
||||
HWY_DASSERT(token < TConfig::kVocabSize);
|
||||
Decompress(weights.embedder_input_embedding, token * kModelDim,
|
||||
activations.x.data() + token_idx * kModelDim, kModelDim);
|
||||
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
|
||||
kModelDim);
|
||||
if constexpr (TConfig::kAbsolutePE) {
|
||||
AddAbsolutePositionalEmbeddings(
|
||||
activations.x.data() + token_idx * kModelDim, TConfig::kModelDim,
|
||||
pos);
|
||||
activations.x.data() + token_idx * kModelDim, kModelDim, pos);
|
||||
};
|
||||
});
|
||||
|
||||
|
|
@ -646,72 +646,92 @@ HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
|
|||
activations.x.data(), kModelDim);
|
||||
}
|
||||
|
||||
// n = 1 specialization
|
||||
template <typename WeightArrayT, class TConfig>
|
||||
HWY_NOINLINE void Transformer(int token, size_t pos,
|
||||
// Compute the transformer for a batch of input tokens. During generation,
|
||||
// we usually have num_tokens == 1 (and also kBatchSize == 1).
|
||||
template <size_t kBatchSize, typename WeightArrayT, class TConfig>
|
||||
HWY_NOINLINE void Transformer(const int *tokens, size_t num_tokens, size_t pos,
|
||||
const WeightArrayT& weights,
|
||||
Activations<TConfig, 1>& activations,
|
||||
Activations<TConfig, kBatchSize>& activations,
|
||||
KVCache& kv_cache, hwy::ThreadPool& pool,
|
||||
LayersOutputT* layers_output) {
|
||||
HWY_ASSERT(num_tokens <= kBatchSize);
|
||||
if (layers_output != nullptr) {
|
||||
float token_f = token;
|
||||
(*layers_output)(pos, "Tokens", &token_f, 1);
|
||||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
float token_f = tokens[token_idx];
|
||||
(*layers_output)(pos + token_idx, "Tokens", &token_f, 1);
|
||||
}
|
||||
}
|
||||
static constexpr size_t kModelDim = TConfig::kModelDim;
|
||||
Decompress(weights.embedder_input_embedding, token * kModelDim,
|
||||
activations.x.data(), kModelDim);
|
||||
|
||||
GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling =
|
||||
EmbeddingScaling<TConfig>();
|
||||
MulByConst(kEmbScaling, activations.x.data(), kModelDim);
|
||||
if constexpr (TConfig::kAbsolutePE) {
|
||||
AddAbsolutePositionalEmbeddings(activations.x.data(), TConfig::kModelDim,
|
||||
pos);
|
||||
};
|
||||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
const int token = tokens[token_idx];
|
||||
HWY_DASSERT(token >= 0);
|
||||
HWY_DASSERT(token < TConfig::kVocabSize);
|
||||
Decompress(weights.embedder_input_embedding, token * kModelDim,
|
||||
activations.x.data() + token_idx * kModelDim, kModelDim);
|
||||
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
|
||||
kModelDim);
|
||||
if constexpr (TConfig::kAbsolutePE) {
|
||||
AddAbsolutePositionalEmbeddings(
|
||||
activations.x.data() + token_idx * kModelDim, kModelDim,
|
||||
pos + token_idx);
|
||||
};
|
||||
}
|
||||
|
||||
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
||||
auto type = TConfig::kLayerConfig[layer];
|
||||
const auto* layer_weights = weights.GetLayer(layer);
|
||||
size_t layer_of_type =
|
||||
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
|
||||
RMSNormBatched<1>(1, activations.x.data(),
|
||||
layer_weights->pre_attention_norm_scale.data(),
|
||||
activations.pre_att_rms_out.data(), kModelDim);
|
||||
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
|
||||
layer_weights->pre_attention_norm_scale.data(),
|
||||
activations.pre_att_rms_out.data(), kModelDim);
|
||||
if (type == LayerAttentionType::kGemma) {
|
||||
Attention<1>(pos, 1, layer_of_type, activations, layer_weights, kv_cache,
|
||||
pool);
|
||||
Attention<kBatchSize>(pos, num_tokens, layer_of_type, activations,
|
||||
layer_weights, kv_cache, pool);
|
||||
} else {
|
||||
GriffinRecurrent<1>(pos, 1, layer_of_type, activations, layer_weights,
|
||||
kv_cache, pool);
|
||||
GriffinRecurrent<kBatchSize>(pos, num_tokens, layer_of_type, activations,
|
||||
layer_weights, kv_cache, pool);
|
||||
}
|
||||
if (TConfig::kPostNormScale) {
|
||||
RMSNormInplaceBatched<1>(1,
|
||||
layer_weights->post_attention_norm_scale.data(),
|
||||
activations.att_post2.data(), kModelDim);
|
||||
RMSNormInplaceBatched<kBatchSize>(
|
||||
num_tokens, layer_weights->post_attention_norm_scale.data(),
|
||||
activations.att_post2.data(), kModelDim);
|
||||
}
|
||||
AddFromBatched<1>(1, activations.att_post2.data(), activations.x.data(),
|
||||
kModelDim);
|
||||
RMSNormBatched<1>(1, activations.x.data(),
|
||||
layer_weights->pre_ffw_norm_scale.data(),
|
||||
activations.bf_pre_ffw_rms_out.data(), kModelDim);
|
||||
FFW<1>(activations, /* num_tokens = */ 1, layer_weights, pool);
|
||||
AddFromBatched<kBatchSize>(num_tokens, activations.att_post2.data(),
|
||||
activations.x.data(), kModelDim);
|
||||
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
|
||||
layer_weights->pre_ffw_norm_scale.data(),
|
||||
activations.bf_pre_ffw_rms_out.data(),
|
||||
kModelDim);
|
||||
FFW<kBatchSize>(activations, num_tokens, layer_weights, pool);
|
||||
if (TConfig::kPostNormScale) {
|
||||
RMSNormInplaceBatched<1>(1, layer_weights->post_ffw_norm_scale.data(),
|
||||
activations.ffw_out.data(), kModelDim);
|
||||
RMSNormInplaceBatched<kBatchSize>(
|
||||
num_tokens, layer_weights->post_ffw_norm_scale.data(),
|
||||
activations.ffw_out.data(), kModelDim);
|
||||
}
|
||||
AddFromBatched<1>(1, activations.ffw_out.data(), activations.x.data(),
|
||||
kModelDim);
|
||||
AddFromBatched<kBatchSize>(num_tokens, activations.ffw_out.data(),
|
||||
activations.x.data(), kModelDim);
|
||||
if (layers_output != nullptr) {
|
||||
std::string block_name = "blocks." + std::to_string(layer);
|
||||
(*layers_output)(pos, block_name, activations.x.data(), kModelDim);
|
||||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
(*layers_output)(pos + token_idx, block_name,
|
||||
activations.x.data() + token_idx * kModelDim,
|
||||
kModelDim);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Placeholder for internal test4, do not remove
|
||||
|
||||
RMSNormInplaceBatched<1>(1, weights.final_norm_scale.data(),
|
||||
activations.x.data(), kModelDim);
|
||||
RMSNormInplaceBatched<kBatchSize>(num_tokens, weights.final_norm_scale.data(),
|
||||
activations.x.data(), kModelDim);
|
||||
if (layers_output != nullptr) {
|
||||
(*layers_output)(pos, "final_norm", activations.x.data(), kModelDim);
|
||||
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
|
||||
(*layers_output)(pos + token_idx, "final_norm",
|
||||
activations.x.data() + token_idx * kModelDim, kModelDim);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -781,6 +801,7 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
|
|||
}
|
||||
HWY_ASSERT(prompt_size > 0);
|
||||
|
||||
// If no sample_func is provided, we use top-k sampling.
|
||||
const SampleFunc sample_token =
|
||||
runtime_config.sample_func
|
||||
? runtime_config.sample_func
|
||||
|
|
@ -827,36 +848,35 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
|
|||
static_cast<double>(pos_offset) / (prefill_end - prefill_start);
|
||||
}
|
||||
|
||||
// Start generation.
|
||||
const double gen_start = hwy::platform::Now();
|
||||
|
||||
HWY_DASSERT(pos_offset == prompt_size - 1);
|
||||
|
||||
size_t pos_gen_start = pos_offset;
|
||||
int token = prompt.at(pos_offset);
|
||||
runtime_config.stream_token(token, 0);
|
||||
// The loop below is not yet prepared for batch size > 1.
|
||||
HWY_ASSERT(kDecodeBatchSize == 1);
|
||||
if (!runtime_config.stream_token(token, 0.0f)) return;
|
||||
for (size_t generate_pos = 0;
|
||||
pos < max_tokens && generate_pos < max_generated_tokens;
|
||||
++pos, ++pos_offset, ++generate_pos) {
|
||||
const bool is_generating_phase = pos_offset >= prompt_size - 1;
|
||||
Transformer(token, pos, weights, activations, kv_cache, pool,
|
||||
layers_output);
|
||||
float* final_activation = activations.x.data();
|
||||
Transformer<kDecodeBatchSize>(&token, kDecodeBatchSize, pos, weights,
|
||||
activations, kv_cache, pool, layers_output);
|
||||
float token_logit = 0.0f;
|
||||
// The condition below is always true if we are doing Prefill above.
|
||||
// We keep it here for clarity so that the code is correct even if Prefill
|
||||
// is disabled.
|
||||
const bool is_generating_phase = pos_offset >= prompt_size - 1;
|
||||
if (is_generating_phase) {
|
||||
PROFILER_ZONE("Gen.Embedding");
|
||||
// Generation phase
|
||||
// Compute logits from last layer activations.
|
||||
MatVec<kVocabSize, TConfig::kModelDim>(
|
||||
weights.embedder_input_embedding, 0, final_activation,
|
||||
weights.embedder_input_embedding, 0, activations.x.data(),
|
||||
activations.even_odd.data(), activations.logits.data(), pool);
|
||||
LogitsSoftCap(30.0f, activations.logits.data(), kVocabSize);
|
||||
// Barrier: must have all logits so we can subtract max.
|
||||
Softmax(activations.logits.data(), kVocabSize);
|
||||
token = sample_token(activations.logits.data(), kVocabSize);
|
||||
if (!runtime_config.stream_token(token, activations.logits[token])) {
|
||||
token = runtime_config.eos_id;
|
||||
}
|
||||
token_logit = activations.logits[token];
|
||||
if (generate_pos == 0) {
|
||||
timing_info.time_to_first_token = hwy::platform::Now() - gen_start;
|
||||
}
|
||||
|
|
@ -864,20 +884,19 @@ void GenerateT(const ByteStorageT& weights_u8, const ByteStorageT& prefill_u8,
|
|||
// We would take this branch if we were not doing Prefill but would
|
||||
// process the tokens of the prompt one at a time.
|
||||
token = prompt.at(pos_offset + 1);
|
||||
if (!runtime_config.stream_token(token, 0)) {
|
||||
token = runtime_config.eos_id;
|
||||
}
|
||||
}
|
||||
if (!runtime_config.stream_token(token, token_logit)) {
|
||||
token = runtime_config.eos_id;
|
||||
}
|
||||
if (token == runtime_config.eos_id) {
|
||||
if (runtime_config.verbosity >= 2) {
|
||||
const double gen_end = hwy::platform::Now();
|
||||
timing_info.gen_tok_sec =
|
||||
static_cast<double>(pos_offset - pos_gen_start) /
|
||||
(gen_end - gen_start);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (runtime_config.verbosity >= 2) {
|
||||
const double gen_end = hwy::platform::Now();
|
||||
timing_info.gen_tok_sec =
|
||||
static_cast<double>(pos_offset - pos_gen_start) / (gen_end - gen_start);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace HWY_NAMESPACE
|
||||
|
|
@ -898,7 +917,7 @@ struct AllocatePrefill {
|
|||
template <typename TConfig>
|
||||
struct AllocateDecode {
|
||||
ByteStorageT operator()() const {
|
||||
return AllocateSizeof<Activations<TConfig, 1>>();
|
||||
return AllocateSizeof<Activations<TConfig, kDecodeBatchSize>>();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
|
|
|||
|
|
@ -31,6 +31,7 @@
|
|||
namespace gcpp {
|
||||
|
||||
constexpr size_t kPrefillBatchSize = 16;
|
||||
constexpr size_t kDecodeBatchSize = 1;
|
||||
constexpr bool kSystemPrompt = false;
|
||||
|
||||
struct KVCache {
|
||||
|
|
|
|||
Loading…
Reference in New Issue