mirror of https://github.com/google/gemma.cpp.git
Add per-thread even_odd storage for #166.
Also inline ProjQ and ProjKV lambdas, add missing includes/deps for ops_test. PiperOrigin-RevId: 629460608
This commit is contained in:
parent
8f04a8346d
commit
12fb2f05cf
|
|
@ -46,8 +46,10 @@ cc_test(
|
|||
deps = [
|
||||
":ops",
|
||||
"@googletest//:gtest_main",
|
||||
"//compression:compress",
|
||||
"@hwy//:hwy",
|
||||
"@hwy//:hwy_test_util",
|
||||
"@hwy//:thread_pool",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -28,6 +28,11 @@
|
|||
#define GEMMA_TOPK 1
|
||||
#endif // !GEMMA_TOPK
|
||||
|
||||
// Allow changing upper bound on threads as a compiler flag
|
||||
#ifndef GEMMA_MAX_THREADS
|
||||
#define GEMMA_MAX_THREADS 128
|
||||
#endif // !GEMMA_MAX_THREADS
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include <array>
|
||||
|
|
@ -45,6 +50,7 @@ namespace gcpp {
|
|||
|
||||
static constexpr size_t kSeqLen = GEMMA_MAX_SEQLEN;
|
||||
static constexpr size_t kTopK = GEMMA_TOPK;
|
||||
static constexpr size_t kMaxThreads = GEMMA_MAX_THREADS;
|
||||
|
||||
enum class LayerAttentionType {
|
||||
kGemma,
|
||||
|
|
|
|||
|
|
@ -421,6 +421,10 @@ struct Activations {
|
|||
std::array<float, kBatchSize * kModelDim> ffw_out;
|
||||
std::array<float, kBatchSize * TConfig::kVocabSize> logits;
|
||||
|
||||
// For bf16/f32 vectors * bf16 matrix: faster to unpack once beforehand, into
|
||||
// per-thread storage.
|
||||
std::array<float, kModelDim * kMaxThreads> even_odd;
|
||||
|
||||
// Griffin layer internal activations
|
||||
static constexpr size_t kGriffinDim =
|
||||
TConfig::kGriffinLayers > 0 ? kModelDim : 0;
|
||||
|
|
@ -575,13 +579,14 @@ HWY_NOINLINE void GriffinRecurrent(
|
|||
gcpp::Activations<TConfig, kBatchSize>::kModelDim;
|
||||
static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
|
||||
static constexpr size_t kHeads = TConfig::kHeads;
|
||||
static constexpr bool kAdd = true;
|
||||
const size_t batch_offset = batch_idx * kModelDim;
|
||||
const size_t pos = batch_start + batch_idx;
|
||||
|
||||
// X / Y linear layers.
|
||||
float* HWY_RESTRICT y = activations.griffin_y.data() + batch_offset;
|
||||
float* HWY_RESTRICT x = activations.griffin_x.data() + batch_offset;
|
||||
TwoMatVecAdd<true, kModelDim, kModelDim>(
|
||||
TwoMatVecAdd<kAdd, kModelDim, kModelDim>(
|
||||
layer_weights->griffin.linear_x_w, layer_weights->griffin.linear_y_w, 0,
|
||||
activations.pre_att_rms_out.data() + batch_offset,
|
||||
/*add0=*/layer_weights->griffin.linear_x_biases.data(),
|
||||
|
|
@ -631,7 +636,7 @@ HWY_NOINLINE void GriffinRecurrent(
|
|||
constexpr size_t kHeadDim = kModelDim / kHeads;
|
||||
constexpr size_t kMatrixSize = kHeadDim * kHeadDim;
|
||||
size_t head_offset = head * kHeadDim;
|
||||
TwoOfsMatVecAddLoop<true, kHeadDim, kHeadDim>(
|
||||
TwoOfsMatVecAddLoop<kAdd, kHeadDim, kHeadDim>(
|
||||
layer_weights->griffin.gate_w, kMatrixSize * head,
|
||||
kMatrixSize * (kHeads + head), x + head_offset,
|
||||
/*add0=*/layer_weights->griffin.gate_biases.data() + head_offset,
|
||||
|
|
@ -670,9 +675,10 @@ HWY_NOINLINE void GriffinRecurrent(
|
|||
|
||||
// Final linear layer.
|
||||
float* out_ptr = activations.att_post2.data() + batch_idx * kModelDim;
|
||||
MatVecAdd<true, kModelDim, kModelDim>(
|
||||
MatVecAdd<kAdd, kModelDim, kModelDim>(
|
||||
layer_weights->griffin.linear_out_w, 0, x,
|
||||
layer_weights->griffin.linear_out_biases.data(), out_ptr, pool);
|
||||
layer_weights->griffin.linear_out_biases.data(),
|
||||
activations.even_odd.data(), out_ptr, pool);
|
||||
}
|
||||
|
||||
template <size_t kBatchSize, typename LayerT, class TConfig>
|
||||
|
|
@ -704,26 +710,7 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t batch_idx, size_t layer,
|
|||
|
||||
float* x = activations.pre_att_rms_out.data() + batch_idx * kModelDim;
|
||||
|
||||
auto ProjQ = [&](uint64_t head, size_t head_offset) HWY_ATTR {
|
||||
float* HWY_RESTRICT q =
|
||||
activations.q.data() + head * kQKVDim + batch_idx * kHeads * kQKVDim;
|
||||
|
||||
MatVecLoop<kQKVDim, kModelDim>(layer_weights->qkv_einsum_w,
|
||||
head_offset + 0 * kQKVDim * kModelDim, x, q);
|
||||
};
|
||||
|
||||
auto ProjKV = [&](size_t k_offset, size_t v_offset,
|
||||
size_t kv_offset) HWY_ATTR {
|
||||
float* HWY_RESTRICT k = kv_cache.kv_cache.get() + kv_offset;
|
||||
float* HWY_RESTRICT v = k + kQKVDim;
|
||||
|
||||
TwoOfsMatVecLoop<kQKVDim, kModelDim>(layer_weights->qkv_einsum_w, k_offset,
|
||||
v_offset, x, k, v);
|
||||
|
||||
Rope(k, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
|
||||
};
|
||||
|
||||
auto Attn = [&](uint64_t head, size_t head_offset) HWY_ATTR {
|
||||
auto Attn = [&](uint64_t head, size_t head_offset, size_t thread) HWY_ATTR {
|
||||
// Calculate scores
|
||||
float* HWY_RESTRICT q =
|
||||
activations.q.data() + head * kQKVDim + batch_idx * kHeads * kQKVDim;
|
||||
|
|
@ -760,20 +747,21 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t batch_idx, size_t layer,
|
|||
head == 0
|
||||
? activations.att_post2.data() + batch_idx * kModelDim
|
||||
: activations.att_post1.data() + head * kBatchSize * kModelDim;
|
||||
float* even_odd = activations.even_odd.data() + thread * kQKVDim;
|
||||
if (head == 0) {
|
||||
MatVecAddLoop<TConfig::kSoftmaxAttnOutputBiases, kModelDim, kQKVDim>(
|
||||
layer_weights->attn_vec_einsum_w, head * kModelDim * kQKVDim, att_out,
|
||||
layer_weights->attention_output_biases.data(), head_out);
|
||||
layer_weights->attention_output_biases.data(), even_odd, head_out);
|
||||
} else {
|
||||
MatVecLoop<kModelDim, kQKVDim>(layer_weights->attn_vec_einsum_w,
|
||||
head * kModelDim * kQKVDim, att_out,
|
||||
head_out);
|
||||
even_odd, head_out);
|
||||
}
|
||||
};
|
||||
|
||||
if constexpr (kHeads == kKVHeads) {
|
||||
// Multi-Head Attention
|
||||
pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR {
|
||||
pool.Run(0, kHeads, [&](const uint64_t head, size_t thread) HWY_ATTR {
|
||||
// linear projections to QKV
|
||||
const size_t head_offset = TConfig::kInterleaveQKV
|
||||
? 3 * kQKVDim * kModelDim
|
||||
|
|
@ -784,32 +772,41 @@ HWY_NOINLINE void Attention(size_t batch_start, size_t batch_idx, size_t layer,
|
|||
const size_t k_offset = head * head_offset + 1 * mat_offset;
|
||||
const size_t v_offset = head * head_offset + 2 * mat_offset;
|
||||
|
||||
ProjQ(head, q_offset);
|
||||
// ProjQ
|
||||
float* HWY_RESTRICT q =
|
||||
activations.q.data() + head * kQKVDim + batch_idx * kHeads * kQKVDim;
|
||||
MatVecLoop<kQKVDim, kModelDim>(
|
||||
layer_weights->qkv_einsum_w, q_offset + 0 * kQKVDim * kModelDim, x,
|
||||
activations.even_odd.data() + thread * kModelDim, q);
|
||||
|
||||
const size_t kv_offset =
|
||||
cache_pos * kCachePosSize + layer * kCacheLayerSize +
|
||||
head * kQKVDim * 2;
|
||||
// ProjKV
|
||||
const size_t kv_offset = cache_pos * kCachePosSize +
|
||||
layer * kCacheLayerSize + head * kQKVDim * 2;
|
||||
float* HWY_RESTRICT k = kv_cache.kv_cache.get() + kv_offset;
|
||||
float* HWY_RESTRICT v = k + kQKVDim;
|
||||
TwoOfsMatVecLoop<kQKVDim, kModelDim>(layer_weights->qkv_einsum_w,
|
||||
k_offset, v_offset, x, k, v);
|
||||
Rope(k, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
|
||||
|
||||
ProjKV(k_offset, v_offset, kv_offset);
|
||||
|
||||
Attn(head, head * kQKVDim * 2);
|
||||
Attn(head, head * kQKVDim * 2, thread);
|
||||
});
|
||||
} else {
|
||||
// Multi-Query Attention
|
||||
float* HWY_RESTRICT q = activations.q.data() + batch_idx * kHeads * kQKVDim;
|
||||
MatVec<kHeads * kQKVDim, kModelDim>(layer_weights->qkv_einsum_w, 0, x, q,
|
||||
pool);
|
||||
MatVec<kHeads * kQKVDim, kModelDim>(layer_weights->qkv_einsum_w, 0, x,
|
||||
activations.even_odd.data(), q, pool);
|
||||
|
||||
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() +
|
||||
cache_pos * kCachePosSize +
|
||||
layer * kCacheLayerSize;
|
||||
MatVec<kQKVDim * 2, kModelDim>(layer_weights->qkv_einsum_w,
|
||||
kHeads * kQKVDim * kModelDim, x, kv, pool);
|
||||
kHeads * kQKVDim * kModelDim, x,
|
||||
activations.even_odd.data(), kv, pool);
|
||||
|
||||
Rope(kv, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
|
||||
|
||||
pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR {
|
||||
Attn(head, 0);
|
||||
pool.Run(0, kHeads, [&](const uint64_t head, size_t thread) HWY_ATTR {
|
||||
Attn(head, 0, thread);
|
||||
});
|
||||
}
|
||||
|
||||
|
|
@ -829,6 +826,7 @@ HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
|
|||
static constexpr size_t kModelDim = TConfig::kModelDim;
|
||||
static constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
||||
const size_t hidden_offset = batch_idx * kFFHiddenDim * 2;
|
||||
float* HWY_RESTRICT even_odd = activations.even_odd.data();
|
||||
|
||||
{
|
||||
PROFILER_ZONE("Gen.FFW.GatedGELU");
|
||||
|
|
@ -837,15 +835,15 @@ HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
|
|||
float* HWY_RESTRICT out = activations.ffw_hidden.data() + hidden_offset;
|
||||
float* HWY_RESTRICT out_mul = out + kFFHiddenDim;
|
||||
|
||||
// Same matrix, first and second half of rows. Could fuse into one MatVec,
|
||||
// but separating them could help on NUMA e.g. multiple sockets.
|
||||
// Same matrix, first and second half of rows. Could fuse into one MatVec.
|
||||
MatVecAdd<TConfig::kFFBiases, kFFHiddenDim, kModelDim>(
|
||||
layer_weights->gating_einsum_w, kFFHiddenDim * kModelDim, vec,
|
||||
layer_weights->ffw_gating_biases.data() + kFFHiddenDim, out_mul, pool);
|
||||
layer_weights->ffw_gating_biases.data() + kFFHiddenDim, even_odd,
|
||||
out_mul, pool);
|
||||
// Gate, will go through the nonlinearity.
|
||||
MatVecAdd<TConfig::kFFBiases, kFFHiddenDim, kModelDim>(
|
||||
layer_weights->gating_einsum_w, 0, vec,
|
||||
layer_weights->ffw_gating_biases.data(), out, pool);
|
||||
layer_weights->ffw_gating_biases.data(), even_odd, out, pool);
|
||||
|
||||
namespace hn = hwy::HWY_NAMESPACE;
|
||||
using DF = hn::ScalableTag<float>;
|
||||
|
|
@ -858,7 +856,7 @@ HWY_NOINLINE void FFW(Activations<TConfig, kBatchSize>& activations,
|
|||
PROFILER_ZONE("Gen.FFW\\GatedGELU");
|
||||
MatVecAdd<TConfig::kFFBiases, kModelDim, kFFHiddenDim>(
|
||||
layer_weights->linear_w, 0, activations.ffw_hidden.data() + hidden_offset,
|
||||
layer_weights->ffw_output_biases.data(),
|
||||
layer_weights->ffw_output_biases.data(), even_odd,
|
||||
activations.ffw_out.data() + batch_idx * kModelDim, pool);
|
||||
}
|
||||
|
||||
|
|
@ -1110,9 +1108,9 @@ void GenerateImpl(GemmaImpl<TConfig>& gemma, size_t max_tokens,
|
|||
if (is_generating_phase) {
|
||||
PROFILER_ZONE("Gen.Embedding");
|
||||
// Generation phase
|
||||
MatVec<kVocabSize, TConfig::kModelDim>(weights.embedder_input_embedding,
|
||||
0, final_activation,
|
||||
activations.logits.data(), pool);
|
||||
MatVec<kVocabSize, TConfig::kModelDim>(
|
||||
weights.embedder_input_embedding, 0, final_activation,
|
||||
activations.even_odd.data(), activations.logits.data(), pool);
|
||||
// Barrier: must have all logits so we can subtract max.
|
||||
Softmax(activations.logits.data(), kVocabSize);
|
||||
token = SampleTopK<TConfig::kTopK>(activations.logits.data(), kVocabSize,
|
||||
|
|
@ -1193,9 +1191,9 @@ float ComputeCrossEntropyImpl(GemmaImpl<TConfig>& gemma, size_t max_tokens,
|
|||
}
|
||||
Transformer(token, pos, weights, activations, kv_cache, pool,
|
||||
/*layers_output=*/nullptr);
|
||||
MatVec<kVocabSize, kModelDim>(weights.embedder_input_embedding, 0,
|
||||
activations.x.data(),
|
||||
activations.logits.data(), pool);
|
||||
MatVec<kVocabSize, kModelDim>(
|
||||
weights.embedder_input_embedding, 0, activations.x.data(),
|
||||
activations.even_odd.data(), activations.logits.data(), pool);
|
||||
LogitsSoftCap(30.0f, activations.logits.data(), kVocabSize);
|
||||
memcpy(logits.data(), activations.logits.data(),
|
||||
kVocabSize * sizeof(logits[0]));
|
||||
|
|
|
|||
39
gemma/ops.h
39
gemma/ops.h
|
|
@ -93,15 +93,23 @@ HWY_INLINE constexpr size_t RowsPerStrip() {
|
|||
}
|
||||
|
||||
// Simple version without tiling nor threading.
|
||||
// even_odd is precomputed for the current thread.
|
||||
template <bool kAdd, size_t kOuter, size_t kInner, typename ArrayT,
|
||||
typename VecT, typename AddT>
|
||||
HWY_INLINE void MatVecAddLoop(const ArrayT& mat, const size_t mat_ofs,
|
||||
const VecT* HWY_RESTRICT vec_aligned,
|
||||
const AddT* HWY_RESTRICT add,
|
||||
float* HWY_RESTRICT even_odd,
|
||||
float* HWY_RESTRICT out) {
|
||||
PROFILER_ZONE("MatVecAddLoop");
|
||||
const hn::ScalableTag<float> df;
|
||||
|
||||
// Sanity check: we can write without race conditions.
|
||||
if (HWY_IS_TSAN) {
|
||||
even_odd[0] = hwy::ConvertScalarTo<float>(vec_aligned[0]);
|
||||
even_odd[kInner - 1] = -even_odd[0];
|
||||
}
|
||||
|
||||
for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) {
|
||||
const size_t row_ofs = mat_ofs + idx_row * kInner;
|
||||
if constexpr (kAdd) {
|
||||
|
|
@ -113,12 +121,14 @@ HWY_INLINE void MatVecAddLoop(const ArrayT& mat, const size_t mat_ofs,
|
|||
}
|
||||
}
|
||||
|
||||
// even_odd is precomputed for the current thread.
|
||||
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT>
|
||||
HWY_INLINE void MatVecLoop(const ArrayT& mat, const size_t mat_ofs,
|
||||
const VecT* HWY_RESTRICT vec_aligned,
|
||||
float* HWY_RESTRICT even_odd,
|
||||
float* HWY_RESTRICT out) {
|
||||
MatVecAddLoop<false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
mat, mat_ofs, vec_aligned, /*add=*/nullptr, out);
|
||||
MatVecAddLoop</*kAdd=*/false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
mat, mat_ofs, vec_aligned, /*add=*/nullptr, even_odd, out);
|
||||
}
|
||||
|
||||
// Simple version without tiling nor threading, but two offsets/outputs.
|
||||
|
|
@ -156,7 +166,7 @@ HWY_INLINE void TwoOfsMatVecLoop(const ArrayT& mat, const size_t mat_ofs0,
|
|||
const VecT* HWY_RESTRICT vec_aligned,
|
||||
float* HWY_RESTRICT out0,
|
||||
float* HWY_RESTRICT out1) {
|
||||
TwoOfsMatVecAddLoop<false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
TwoOfsMatVecAddLoop</*kAdd=*/false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
mat, mat_ofs0, mat_ofs1, vec_aligned, /*add0=*/nullptr, /*add1=*/nullptr,
|
||||
out0, out1);
|
||||
}
|
||||
|
|
@ -237,19 +247,29 @@ HWY_INLINE void FullDotProductsForStrip(DF df, const ArrayT& mat,
|
|||
|
||||
// Stores dot products of rows with `vec_aligned` + add the values from `add`
|
||||
// (if kAdd), then stores them to `out`.
|
||||
//
|
||||
// `even_odd` has kInner elements for each thread.
|
||||
template <bool kAdd, size_t kOuter, size_t kInner, typename ArrayT,
|
||||
typename VecT, typename AddT>
|
||||
HWY_INLINE void MatVecAdd(const ArrayT& mat, const size_t mat_ofs,
|
||||
const VecT* HWY_RESTRICT const vec_aligned,
|
||||
const AddT* HWY_RESTRICT const add,
|
||||
float* HWY_RESTRICT out, hwy::ThreadPool& pool) {
|
||||
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
|
||||
hwy::ThreadPool& pool) {
|
||||
PROFILER_ZONE("MatVecAdd");
|
||||
|
||||
const hn::ScalableTag<float> df;
|
||||
constexpr size_t kRowsPerStrip = RowsPerStrip<kOuter>();
|
||||
constexpr size_t kNumStrips = kOuter / kRowsPerStrip;
|
||||
|
||||
// Sanity check: each thread can write without race conditions.
|
||||
if (HWY_IS_TSAN) {
|
||||
pool.Run(
|
||||
0, pool.NumWorkers(), [even_odd](uint64_t /*task*/, size_t thread) {
|
||||
even_odd[thread * kInner] = -static_cast<float>(thread);
|
||||
even_odd[thread * kInner + kInner - 1] = static_cast<float>(thread);
|
||||
});
|
||||
}
|
||||
|
||||
// For each entire strip.
|
||||
pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR {
|
||||
PROFILER_ZONE("MatVec.lambda");
|
||||
|
|
@ -272,9 +292,10 @@ HWY_INLINE void MatVecAdd(const ArrayT& mat, const size_t mat_ofs,
|
|||
template <size_t kOuter, size_t kInner, typename ArrayT, typename VecT>
|
||||
HWY_INLINE void MatVec(const ArrayT& mat, const size_t mat_ofs,
|
||||
const VecT* HWY_RESTRICT const vec_aligned,
|
||||
float* HWY_RESTRICT out, hwy::ThreadPool& pool) {
|
||||
MatVecAdd<false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
mat, mat_ofs, vec_aligned, /*add=*/nullptr, out, pool);
|
||||
float* HWY_RESTRICT even_odd, float* HWY_RESTRICT out,
|
||||
hwy::ThreadPool& pool) {
|
||||
MatVecAdd</*kAdd=*/false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
mat, mat_ofs, vec_aligned, /*add=*/nullptr, even_odd, out, pool);
|
||||
}
|
||||
|
||||
template <class D, HWY_IF_F32_D(D)>
|
||||
|
|
@ -427,7 +448,7 @@ HWY_NOINLINE void TwoMatVec(const ArrayT& mat0, const ArrayT& mat1,
|
|||
const VecT* HWY_RESTRICT vec_aligned,
|
||||
float* HWY_RESTRICT out0, float* HWY_RESTRICT out1,
|
||||
hwy::ThreadPool& pool) {
|
||||
TwoMatVecAdd<false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
TwoMatVecAdd</*kAdd=*/false, kOuter, kInner, ArrayT, VecT, VecT>(
|
||||
mat0, mat1, mat_ofs, vec_aligned, /*add0=*/nullptr, /*add1=*/nullptr,
|
||||
out0, out1, pool);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -17,11 +17,15 @@
|
|||
#define HWY_DISABLED_TARGETS HWY_SCALAR
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include "compression/compress.h"
|
||||
#include "hwy/aligned_allocator.h"
|
||||
#include "hwy/base.h"
|
||||
#include "hwy/contrib/thread_pool/thread_pool.h"
|
||||
|
||||
// clang-format off
|
||||
#undef HWY_TARGET_INCLUDE
|
||||
|
|
@ -375,6 +379,7 @@ CompressedArray<float, kOuter * kInner> GenerateMat(size_t offset) {
|
|||
template <size_t length>
|
||||
hwy::AlignedFreeUniquePtr<float[]> GenerateVec(size_t offset) {
|
||||
hwy::AlignedFreeUniquePtr<float[]> vec = hwy::AllocateAligned<float>(length);
|
||||
HWY_ASSERT(vec);
|
||||
for (size_t idx = 0; idx < length; idx++) {
|
||||
vec[idx] = static_cast<float>(idx + offset);
|
||||
}
|
||||
|
|
@ -388,8 +393,9 @@ hwy::AlignedFreeUniquePtr<float[]> SimpleMatVecAdd(
|
|||
const hwy::AlignedFreeUniquePtr<float[]>& add) {
|
||||
hwy::AlignedFreeUniquePtr<float[]> uncompressed_mat =
|
||||
hwy::AllocateAligned<float>(kOuter * kInner);
|
||||
Decompress(mat, 0, uncompressed_mat.get(), kOuter * kInner);
|
||||
hwy::AlignedFreeUniquePtr<float[]> out = hwy::AllocateAligned<float>(kOuter);
|
||||
HWY_ASSERT(uncompressed_mat && out);
|
||||
Decompress(mat, 0, uncompressed_mat.get(), kOuter * kInner);
|
||||
for (size_t idx_row = 0; idx_row < kOuter; idx_row++) {
|
||||
out[idx_row] = add[idx_row];
|
||||
for (size_t idx_col = 0; idx_col < kInner; idx_col++) {
|
||||
|
|
@ -418,12 +424,15 @@ void TestMatVecAdd() {
|
|||
CompressedArray<float, kOuter * kInner> mat = GenerateMat<kOuter, kInner>(0);
|
||||
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
|
||||
hwy::AlignedFreeUniquePtr<float[]> add = GenerateVec<kOuter>(0);
|
||||
hwy::AlignedFreeUniquePtr<float[]> even_odd =
|
||||
hwy::AllocateAligned<float>(kInner * pool.NumWorkers());
|
||||
hwy::AlignedFreeUniquePtr<float[]> expected_out =
|
||||
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add);
|
||||
hwy::AlignedFreeUniquePtr<float[]> actual_out =
|
||||
hwy::AllocateAligned<float>(kOuter);
|
||||
MatVecAdd<true, kOuter, kInner>(mat, 0, vec.get(), add.get(),
|
||||
actual_out.get(), pool);
|
||||
HWY_ASSERT(vec && add && even_odd && expected_out && actual_out);
|
||||
MatVecAdd</*kAdd=*/true, kOuter, kInner>(
|
||||
mat, 0, vec.get(), add.get(), even_odd.get(), actual_out.get(), pool);
|
||||
AssertClose<kOuter>(actual_out, expected_out);
|
||||
}
|
||||
|
||||
|
|
@ -433,12 +442,15 @@ void TestMatVecAddLoop() {
|
|||
CompressedArray<float, kOuter * kInner> mat = GenerateMat<kOuter, kInner>(0);
|
||||
hwy::AlignedFreeUniquePtr<float[]> vec = GenerateVec<kInner>(0);
|
||||
hwy::AlignedFreeUniquePtr<float[]> add = GenerateVec<kOuter>(0);
|
||||
hwy::AlignedFreeUniquePtr<float[]> even_odd =
|
||||
hwy::AllocateAligned<float>(kInner);
|
||||
hwy::AlignedFreeUniquePtr<float[]> expected_out =
|
||||
SimpleMatVecAdd<kOuter, kInner>(mat, vec, add);
|
||||
hwy::AlignedFreeUniquePtr<float[]> actual_out =
|
||||
hwy::AllocateAligned<float>(kOuter);
|
||||
HWY_ASSERT(vec && add && even_odd && expected_out && actual_out);
|
||||
MatVecAddLoop<true, kOuter, kInner>(mat, 0, vec.get(), add.get(),
|
||||
actual_out.get());
|
||||
even_odd.get(), actual_out.get());
|
||||
AssertClose<kOuter>(actual_out, expected_out);
|
||||
}
|
||||
|
||||
|
|
@ -459,6 +471,8 @@ void TestTwoMatVecAdd() {
|
|||
hwy::AllocateAligned<float>(kOuter);
|
||||
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
|
||||
hwy::AllocateAligned<float>(kOuter);
|
||||
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
|
||||
expected_out1 && actual_out1);
|
||||
TwoMatVecAdd<true, kOuter, kInner>(mat0, mat1, 0, vec.get(), add0.get(),
|
||||
add1.get(), actual_out0.get(),
|
||||
actual_out1.get(), pool);
|
||||
|
|
@ -481,6 +495,8 @@ void TestTwoOfsMatVecAddLoop() {
|
|||
hwy::AllocateAligned<float>(kOuter);
|
||||
hwy::AlignedFreeUniquePtr<float[]> actual_out1 =
|
||||
hwy::AllocateAligned<float>(kOuter);
|
||||
HWY_ASSERT(vec && add0 && add1 && expected_out0 && actual_out0 &&
|
||||
expected_out1 && actual_out1);
|
||||
TwoOfsMatVecAddLoop<true, kOuter, kInner>(mat, 0, 0, vec.get(), add0.get(),
|
||||
add1.get(), actual_out0.get(),
|
||||
actual_out1.get());
|
||||
|
|
|
|||
|
|
@ -96,8 +96,9 @@ class AppArgs : public ArgsBase<AppArgs> {
|
|||
}
|
||||
|
||||
static inline size_t GetSupportedThreadCount() {
|
||||
return static_cast<size_t>(std::clamp(
|
||||
static_cast<int>(std::thread::hardware_concurrency()) - 2, 1, 18));
|
||||
return static_cast<size_t>(
|
||||
std::clamp(static_cast<int>(std::thread::hardware_concurrency()) - 2, 1,
|
||||
HWY_MIN(static_cast<int>(kMaxThreads), 18)));
|
||||
}
|
||||
|
||||
Path log; // output
|
||||
|
|
|
|||
Loading…
Reference in New Issue