Split out common parts (embedder and transformer block) from Prefill() and Transformer() into separate functions.

PiperOrigin-RevId: 644455520
This commit is contained in:
The gemma.cpp Authors 2024-06-18 11:24:22 -07:00 committed by Copybara-Service
parent d7d9d14f0e
commit 0e612d9a20
1 changed files with 68 additions and 95 deletions

View File

@ -602,70 +602,86 @@ static void AddFromBatched(size_t num_tokens, const float* other, float* x,
// Placeholder for internal test3, do not remove
template <size_t kBatchSize, typename WeightArrayT, class TConfig>
HWY_NOINLINE void EmbedToken(int token, size_t token_idx, size_t pos,
const WeightArrayT& weights,
Activations<TConfig, kBatchSize>& activations) {
static constexpr size_t kModelDim = TConfig::kModelDim;
GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling =
EmbeddingScaling<TConfig>();
HWY_DASSERT(token >= 0);
HWY_DASSERT(token < TConfig::kVocabSize);
Decompress(weights.embedder_input_embedding, token * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
kModelDim);
if constexpr (TConfig::kAbsolutePE) {
AddAbsolutePositionalEmbeddings(
activations.x.data() + token_idx * kModelDim, kModelDim,
pos + token_idx);
};
}
template <size_t kBatchSize, typename LayerWeightArrayT, class TConfig>
HWY_NOINLINE void TransformerLayer(
size_t num_tokens, size_t pos, size_t layer,
const LayerWeightArrayT* layer_weights,
Activations<TConfig, kBatchSize>& activations, KVCache& kv_cache,
hwy::ThreadPool& pool) {
static constexpr size_t kModelDim = TConfig::kModelDim;
auto type = TConfig::kLayerConfig[layer];
size_t layer_of_type =
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
if (type == LayerAttentionType::kGemma) {
Attention<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
} else {
GriffinRecurrent<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
}
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.att_post2.data(),
activations.x.data(), kModelDim);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(), kModelDim);
FFW<kBatchSize>(activations, num_tokens, layer_weights, pool);
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(num_tokens,
layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.ffw_out.data(),
activations.x.data(), kModelDim);
}
template <size_t kBatchSize, typename WeightArrayT, typename TConfig>
HWY_NOINLINE void Prefill(const int* tokens, size_t num_tokens, size_t pos,
const WeightArrayT& weights,
Activations<TConfig, kBatchSize>& activations,
KVCache& kv_cache, hwy::ThreadPool& pool) {
PROFILER_ZONE("Gen.Prefill\\Att\\FFW");
static constexpr size_t kModelDim = TConfig::kModelDim;
GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling =
EmbeddingScaling<TConfig>();
pool.Run(
0, num_tokens, [&](const uint64_t token_idx, size_t /*thread*/) HWY_ATTR {
const int token = tokens[token_idx];
HWY_DASSERT(token >= 0);
HWY_DASSERT(token < TConfig::kVocabSize);
Decompress(weights.embedder_input_embedding, token * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
kModelDim);
if constexpr (TConfig::kAbsolutePE) {
AddAbsolutePositionalEmbeddings(
activations.x.data() + token_idx * kModelDim, kModelDim, pos);
};
EmbedToken(tokens[token_idx], token_idx, pos, weights, activations);
});
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
auto type = TConfig::kLayerConfig[layer];
const auto* layer_weights = weights.GetLayer(layer);
size_t layer_of_type =
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
if (type == LayerAttentionType::kGemma) {
Attention<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
} else {
GriffinRecurrent<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
}
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.att_post2.data(),
activations.x.data(), kModelDim);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(),
kModelDim);
FFW<kBatchSize>(activations, num_tokens, layer_weights, pool);
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.ffw_out.data(),
activations.x.data(), kModelDim);
} // foreach layer
TransformerLayer(num_tokens, pos, layer, layer_weights, activations,
kv_cache, pool);
}
RMSNormInplaceBatched<kBatchSize>(num_tokens, weights.final_norm_scale.data(),
activations.x.data(), kModelDim);
activations.x.data(), TConfig::kModelDim);
}
// Compute the transformer for a batch of input tokens. During generation,
@ -684,57 +700,14 @@ HWY_NOINLINE void Transformer(const int* tokens, size_t num_tokens, size_t pos,
}
}
static constexpr size_t kModelDim = TConfig::kModelDim;
GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling =
EmbeddingScaling<TConfig>();
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {
const int token = tokens[token_idx];
HWY_DASSERT(token >= 0);
HWY_DASSERT(token < TConfig::kVocabSize);
Decompress(weights.embedder_input_embedding, token * kModelDim,
activations.x.data() + token_idx * kModelDim, kModelDim);
MulByConst(kEmbScaling, activations.x.data() + token_idx * kModelDim,
kModelDim);
if constexpr (TConfig::kAbsolutePE) {
AddAbsolutePositionalEmbeddings(
activations.x.data() + token_idx * kModelDim, kModelDim,
pos + token_idx);
};
EmbedToken(tokens[token_idx], token_idx, pos, weights, activations);
}
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
auto type = TConfig::kLayerConfig[layer];
const auto* layer_weights = weights.GetLayer(layer);
size_t layer_of_type =
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_attention_norm_scale.data(),
activations.pre_att_rms_out.data(), kModelDim);
if (type == LayerAttentionType::kGemma) {
Attention<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
} else {
GriffinRecurrent<kBatchSize>(pos, num_tokens, layer_of_type, activations,
layer_weights, kv_cache, pool);
}
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_attention_norm_scale.data(),
activations.att_post2.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.att_post2.data(),
activations.x.data(), kModelDim);
RMSNormBatched<kBatchSize>(num_tokens, activations.x.data(),
layer_weights->pre_ffw_norm_scale.data(),
activations.bf_pre_ffw_rms_out.data(),
kModelDim);
FFW<kBatchSize>(activations, num_tokens, layer_weights, pool);
if (TConfig::kPostNormScale) {
RMSNormInplaceBatched<kBatchSize>(
num_tokens, layer_weights->post_ffw_norm_scale.data(),
activations.ffw_out.data(), kModelDim);
}
AddFromBatched<kBatchSize>(num_tokens, activations.ffw_out.data(),
activations.x.data(), kModelDim);
TransformerLayer(num_tokens, pos, layer, layer_weights, activations,
kv_cache, pool);
if (layers_output) {
std::string block_name = "blocks." + std::to_string(layer);
for (size_t token_idx = 0; token_idx < num_tokens; ++token_idx) {