Fooocus/modules/async_worker.py

1455 lines
75 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import threading
from extras.inpaint_mask import generate_mask_from_image, SAMOptions
from modules.patch import PatchSettings, patch_settings, patch_all
import modules.config
patch_all()
class AsyncTask:
def __init__(self, args):
from modules.flags import Performance, MetadataScheme, ip_list, controlnet_image_count
from modules.util import get_enabled_loras
from modules.config import default_max_lora_number
import args_manager
self.args = args.copy()
self.yields = []
self.results = []
self.last_stop = False
self.processing = False
self.performance_loras = []
if len(args) == 0:
return
args.reverse()
self.generate_image_grid = args.pop()
self.prompt = args.pop()
self.negative_prompt = args.pop()
self.style_selections = args.pop()
self.performance_selection = Performance(args.pop())
self.steps = self.performance_selection.steps()
self.original_steps = self.steps
self.aspect_ratios_selection = args.pop()
self.image_number = args.pop()
self.output_format = args.pop()
self.seed = int(args.pop())
self.read_wildcards_in_order = args.pop()
self.sharpness = args.pop()
self.cfg_scale = args.pop()
self.base_model_name = args.pop()
self.refiner_model_name = args.pop()
self.refiner_switch = args.pop()
self.loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in
range(default_max_lora_number)])
self.input_image_checkbox = args.pop()
self.current_tab = args.pop()
self.uov_method = args.pop()
self.uov_input_image = args.pop()
self.outpaint_selections = args.pop()
self.inpaint_input_image = args.pop()
self.inpaint_additional_prompt = args.pop()
self.inpaint_mask_image_upload = args.pop()
self.disable_preview = args.pop()
self.disable_intermediate_results = args.pop()
self.disable_seed_increment = args.pop()
self.black_out_nsfw = args.pop()
self.adm_scaler_positive = args.pop()
self.adm_scaler_negative = args.pop()
self.adm_scaler_end = args.pop()
self.adaptive_cfg = args.pop()
self.clip_skip = args.pop()
self.sampler_name = args.pop()
self.scheduler_name = args.pop()
self.vae_name = args.pop()
self.overwrite_step = args.pop()
self.overwrite_switch = args.pop()
self.overwrite_width = args.pop()
self.overwrite_height = args.pop()
self.overwrite_vary_strength = args.pop()
self.overwrite_upscale_strength = args.pop()
self.mixing_image_prompt_and_vary_upscale = args.pop()
self.mixing_image_prompt_and_inpaint = args.pop()
self.debugging_cn_preprocessor = args.pop()
self.skipping_cn_preprocessor = args.pop()
self.canny_low_threshold = args.pop()
self.canny_high_threshold = args.pop()
self.refiner_swap_method = args.pop()
self.controlnet_softness = args.pop()
self.freeu_enabled = args.pop()
self.freeu_b1 = args.pop()
self.freeu_b2 = args.pop()
self.freeu_s1 = args.pop()
self.freeu_s2 = args.pop()
self.debugging_inpaint_preprocessor = args.pop()
self.inpaint_disable_initial_latent = args.pop()
self.inpaint_engine = args.pop()
self.inpaint_strength = args.pop()
self.inpaint_respective_field = args.pop()
self.inpaint_advanced_masking_checkbox = args.pop()
self.invert_mask_checkbox = args.pop()
self.inpaint_erode_or_dilate = args.pop()
self.save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
self.metadata_scheme = MetadataScheme(
args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
self.cn_tasks = {x: [] for x in ip_list}
for _ in range(controlnet_image_count):
cn_img = args.pop()
cn_stop = args.pop()
cn_weight = args.pop()
cn_type = args.pop()
if cn_img is not None:
self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])
self.debugging_dino = args.pop()
self.dino_erode_or_dilate = args.pop()
self.debugging_enhance_masks_checkbox = args.pop()
self.enhance_input_image = args.pop()
self.enhance_checkbox = args.pop()
self.enhance_uov_method = args.pop()
self.enhance_uov_processing_order = args.pop()
self.enhance_uov_prompt_type = args.pop()
self.enhance_ctrls = []
for _ in range(modules.config.default_enhance_tabs):
enhance_enabled = args.pop()
enhance_mask_dino_prompt_text = args.pop()
enhance_prompt = args.pop()
enhance_negative_prompt = args.pop()
enhance_mask_model = args.pop()
enhance_mask_cloth_category = args.pop()
enhance_mask_sam_model = args.pop()
enhance_mask_text_threshold = args.pop()
enhance_mask_box_threshold = args.pop()
enhance_mask_sam_max_detections = args.pop()
enhance_inpaint_disable_initial_latent = args.pop()
enhance_inpaint_engine = args.pop()
enhance_inpaint_strength = args.pop()
enhance_inpaint_respective_field = args.pop()
enhance_inpaint_erode_or_dilate = args.pop()
enhance_mask_invert = args.pop()
if enhance_enabled:
self.enhance_ctrls.append([
enhance_mask_dino_prompt_text,
enhance_prompt,
enhance_negative_prompt,
enhance_mask_model,
enhance_mask_cloth_category,
enhance_mask_sam_model,
enhance_mask_text_threshold,
enhance_mask_box_threshold,
enhance_mask_sam_max_detections,
enhance_inpaint_disable_initial_latent,
enhance_inpaint_engine,
enhance_inpaint_strength,
enhance_inpaint_respective_field,
enhance_inpaint_erode_or_dilate,
enhance_mask_invert
])
async_tasks = []
class EarlyReturnException:
pass
def worker():
global async_tasks
import os
import traceback
import math
import numpy as np
import torch
import time
import shared
import random
import copy
import cv2
import modules.default_pipeline as pipeline
import modules.core as core
import modules.flags as flags
import modules.patch
import ldm_patched.modules.model_management
import extras.preprocessors as preprocessors
import modules.inpaint_worker as inpaint_worker
import modules.constants as constants
import extras.ip_adapter as ip_adapter
import extras.face_crop
import fooocus_version
from extras.censor import default_censor
from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name
from modules.private_logger import log
from extras.expansion import safe_str
from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil,
get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt,
apply_wildcards)
from modules.upscaler import perform_upscale
from modules.flags import Performance
from modules.meta_parser import get_metadata_parser
pid = os.getpid()
print(f'Started worker with PID {pid}')
try:
async_gradio_app = shared.gradio_root
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
if async_gradio_app.share:
flag += f''' or {async_gradio_app.share_url}'''
print(flag)
except Exception as e:
print(e)
def progressbar(async_task, number, text):
print(f'[Fooocus] {text}')
async_task.yields.append(['preview', (number, text, None)])
def yield_result(async_task, imgs, progressbar_index, black_out_nsfw, censor=True, do_not_show_finished_images=False):
if not isinstance(imgs, list):
imgs = [imgs]
if censor and (modules.config.default_black_out_nsfw or black_out_nsfw):
progressbar(async_task, progressbar_index, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
async_task.results = async_task.results + imgs
if do_not_show_finished_images:
return
async_task.yields.append(['results', async_task.results])
return
def build_image_wall(async_task):
results = []
if len(async_task.results) < 2:
return
for img in async_task.results:
if isinstance(img, str) and os.path.exists(img):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if not isinstance(img, np.ndarray):
return
if img.ndim != 3:
return
results.append(img)
H, W, C = results[0].shape
for img in results:
Hn, Wn, Cn = img.shape
if H != Hn:
return
if W != Wn:
return
if C != Cn:
return
cols = float(len(results)) ** 0.5
cols = int(math.ceil(cols))
rows = float(len(results)) / float(cols)
rows = int(math.ceil(rows))
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)
for y in range(rows):
for x in range(cols):
if y * cols + x < len(results):
img = results[y * cols + x]
wall[y * H:y * H + H, x * W:x * W + W, :] = img
# must use deep copy otherwise gradio is super laggy. Do not use list.append() .
async_task.results = async_task.results + [wall]
return
def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id,
denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond,
negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps,
total_count, show_intermediate_results):
if async_task.last_stop is not False:
ldm_patched.modules.model_management.interrupt_current_processing()
if 'cn' in goals:
for cn_flag, cn_path in [
(flags.cn_canny, controlnet_canny_path),
(flags.cn_cpds, controlnet_cpds_path)
]:
for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]:
positive_cond, negative_cond = core.apply_controlnet(
positive_cond, negative_cond,
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
imgs = pipeline.process_diffusion(
positive_cond=positive_cond,
negative_cond=negative_cond,
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback,
sampler_name=async_task.sampler_name,
scheduler_name=final_scheduler_name,
latent=initial_latent,
denoise=denoising_strength,
tiled=tiled,
cfg_scale=async_task.cfg_scale,
refiner_swap_method=async_task.refiner_swap_method,
disable_preview=async_task.disable_preview
)
del positive_cond, negative_cond # Save memory
if inpaint_worker.current_task is not None:
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps)
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
progressbar(async_task, current_progress,
f'Saving image {current_task_id + 1}/{total_count} to system ...')
img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras)
yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False,
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
return imgs, img_paths, current_progress
def apply_patch_settings(async_task):
patch_settings[pid] = PatchSettings(
async_task.sharpness,
async_task.adm_scaler_end,
async_task.adm_scaler_positive,
async_task.adm_scaler_negative,
async_task.controlnet_softness,
async_task.adaptive_cfg
)
def save_and_log(async_task, height, imgs, task, use_expansion, width, loras) -> list:
img_paths = []
for x in imgs:
d = [('Prompt', 'prompt', task['log_positive_prompt']),
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
('Styles', 'styles',
str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])),
('Performance', 'performance', async_task.performance_selection.value),
('Steps', 'steps', async_task.steps),
('Resolution', 'resolution', str((width, height))),
('Guidance Scale', 'guidance_scale', async_task.cfg_scale),
('Sharpness', 'sharpness', async_task.sharpness),
('ADM Guidance', 'adm_guidance', str((
modules.patch.patch_settings[pid].positive_adm_scale,
modules.patch.patch_settings[pid].negative_adm_scale,
modules.patch.patch_settings[pid].adm_scaler_end))),
('Base Model', 'base_model', async_task.base_model_name),
('Refiner Model', 'refiner_model', async_task.refiner_model_name),
('Refiner Switch', 'refiner_switch', async_task.refiner_switch)]
if async_task.refiner_model_name != 'None':
if async_task.overwrite_switch > 0:
d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch))
if async_task.refiner_swap_method != flags.refiner_swap_method:
d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method))
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
d.append(
('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
if async_task.clip_skip > 1:
d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip))
d.append(('Sampler', 'sampler', async_task.sampler_name))
d.append(('Scheduler', 'scheduler', async_task.scheduler_name))
d.append(('VAE', 'vae', async_task.vae_name))
d.append(('Seed', 'seed', str(task['task_seed'])))
if async_task.freeu_enabled:
d.append(('FreeU', 'freeu',
str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2))))
for li, (n, w) in enumerate(loras):
if n != 'None':
d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}'))
metadata_parser = None
if async_task.save_metadata_to_images:
metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme)
metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
task['log_negative_prompt'], task['negative'],
async_task.steps, async_task.base_model_name, async_task.refiner_model_name,
loras, async_task.vae_name)
d.append(('Metadata Scheme', 'metadata_scheme',
async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images))
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
img_paths.append(log(x, d, metadata_parser, async_task.output_format, task))
return img_paths
def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress):
for task in async_task.cn_tasks[flags.cn_canny]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not async_task.skipping_cn_preprocessor:
cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold,
async_task.canny_high_threshold)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
for task in async_task.cn_tasks[flags.cn_cpds]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not async_task.skipping_cn_preprocessor:
cn_img = preprocessors.cpds(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
for task in async_task.cn_tasks[flags.cn_ip]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
for task in async_task.cn_tasks[flags.cn_ip_face]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
if not async_task.skipping_cn_preprocessor:
cn_img = extras.face_crop.crop_image(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
if async_task.debugging_cn_preprocessor:
yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True)
all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face]
if len(all_ip_tasks) > 0:
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)
def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False):
if 'subtle' in uov_method:
denoising_strength = 0.5
if 'strong' in uov_method:
denoising_strength = 0.85
if async_task.overwrite_vary_strength > 0:
denoising_strength = async_task.overwrite_vary_strength
shape_ceil = get_image_shape_ceil(uov_input_image)
if shape_ceil < 1024:
print(f'[Vary] Image is resized because it is too small.')
shape_ceil = 1024
elif shape_ceil > 2048:
print(f'[Vary] Image is resized because it is too big.')
shape_ceil = 2048
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=async_task.steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=async_task.refiner_swap_method
)
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((width, height))}.')
return uov_input_image, denoising_strength, initial_latent, width, height, current_progress
def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image,
inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch,
inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False,
advance_progress=False):
if not skip_apply_outpaint:
inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask)
inpaint_worker.current_task = inpaint_worker.InpaintWorker(
image=inpaint_image,
mask=inpaint_mask,
use_fill=denoising_strength > 0.99,
k=inpaint_respective_field
)
if async_task.debugging_inpaint_preprocessor:
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100,
async_task.black_out_nsfw, do_not_show_finished_images=True)
raise EarlyReturnException
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE Inpaint encoding ...')
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
steps=async_task.steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=async_task.refiner_swap_method
)
latent_inpaint, latent_mask = core.encode_vae_inpaint(
mask=inpaint_pixel_mask,
vae=candidate_vae,
pixels=inpaint_pixel_image)
latent_swap = None
if candidate_vae_swap is not None:
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE encoding ...')
latent_fill = core.encode_vae(
vae=candidate_vae,
pixels=inpaint_pixel_fill)['samples']
inpaint_worker.current_task.load_latent(
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
if inpaint_parameterized:
pipeline.final_unet = inpaint_worker.current_task.patch(
inpaint_head_model_path=inpaint_head_model_path,
inpaint_latent=latent_inpaint,
inpaint_latent_mask=latent_mask,
model=pipeline.final_unet
)
if not inpaint_disable_initial_latent:
initial_latent = {'samples': latent_fill}
B, C, H, W = latent_fill.shape
height, width = H * 8, W * 8
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.')
return denoising_strength, initial_latent, width, height, current_progress
def apply_outpaint(async_task, inpaint_image, inpaint_mask):
if len(async_task.outpaint_selections) > 0:
H, W, C = inpaint_image.shape
if 'top' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
constant_values=255)
if 'bottom' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
constant_values=255)
H, W, C = inpaint_image.shape
if 'left' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant',
constant_values=255)
if 'right' in async_task.outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant',
constant_values=255)
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
async_task.inpaint_strength = 1.0
async_task.inpaint_respective_field = 1.0
return inpaint_image, inpaint_mask
def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False):
H, W, C = uov_input_image.shape
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...')
uov_input_image = perform_upscale(uov_input_image)
print(f'Image upscaled.')
if '1.5x' in uov_method:
f = 1.5
elif '2x' in uov_method:
f = 2.0
else:
f = 1.0
shape_ceil = get_shape_ceil(H * f, W * f)
if shape_ceil < 1024:
print(f'[Upscale] Image is resized because it is too small.')
uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
shape_ceil = 1024
else:
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)
image_is_super_large = shape_ceil > 2800
if 'fast' in uov_method:
direct_return = True
elif image_is_super_large:
print('Image is too large. Directly returned the SR image. '
'Usually directly return SR image at 4K resolution '
'yields better results than SDXL diffusion.')
direct_return = True
else:
direct_return = False
if direct_return:
return direct_return, uov_input_image, None, None, None, None, None, current_progress
tiled = True
denoising_strength = 0.382
if async_task.overwrite_upscale_strength > 0:
denoising_strength = async_task.overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=async_task.steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=async_task.refiner_swap_method
)
initial_latent = core.encode_vae(
vae=candidate_vae,
pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((width, height))}.')
return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress
def apply_overrides(async_task, steps, height, width):
if async_task.overwrite_step > 0:
steps = async_task.overwrite_step
switch = int(round(async_task.steps * async_task.refiner_switch))
if async_task.overwrite_switch > 0:
switch = async_task.overwrite_switch
if async_task.overwrite_width > 0:
width = async_task.overwrite_width
if async_task.overwrite_height > 0:
height = async_task.overwrite_height
return steps, switch, width, height
def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style,
use_synthetic_refiner, current_progress, advance_progress=False):
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')
prompt = prompts[0]
negative_prompt = negative_prompts[0]
if prompt == '':
# disable expansion when empty since it is not meaningful and influences image prompt
use_expansion = False
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Loading models ...')
lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames,
async_task.performance_selection)
loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras,
modules.config.default_max_lora_number,
lora_filenames=lora_filenames)
loras += async_task.performance_loras
pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name,
base_model_name=async_task.base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name)
pipeline.set_clip_skip(async_task.clip_skip)
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Processing prompts ...')
tasks = []
for i in range(image_number):
if disable_seed_increment:
task_seed = async_task.seed % (constants.MAX_SEED + 1)
else:
task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future
task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order)
task_prompt = apply_arrays(task_prompt, i)
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order)
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt
in
extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt
in
extra_negative_prompts]
positive_basic_workloads = []
negative_basic_workloads = []
task_styles = async_task.style_selections.copy()
if use_style:
for j, s in enumerate(task_styles):
if s == random_style_name:
s = get_random_style(task_rng)
task_styles[j] = s
p, n = apply_style(s, positive=task_prompt)
positive_basic_workloads = positive_basic_workloads + p
negative_basic_workloads = negative_basic_workloads + n
else:
positive_basic_workloads.append(task_prompt)
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative.
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)
tasks.append(dict(
task_seed=task_seed,
task_prompt=task_prompt,
task_negative_prompt=task_negative_prompt,
positive=positive_basic_workloads,
negative=negative_basic_workloads,
expansion='',
c=None,
uc=None,
positive_top_k=len(positive_basic_workloads),
negative_top_k=len(negative_basic_workloads),
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
styles=task_styles
))
if use_expansion:
if advance_progress:
current_progress += 1
for i, t in enumerate(tasks):
progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
if advance_progress:
current_progress += 1
for i, t in enumerate(tasks):
progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
if advance_progress:
current_progress += 1
for i, t in enumerate(tasks):
if abs(float(async_task.cfg_scale) - 1.0) < 1e-4:
t['uc'] = pipeline.clone_cond(t['c'])
else:
progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
return tasks, use_expansion, loras, current_progress
def apply_freeu(async_task):
print(f'FreeU is enabled!')
pipeline.final_unet = core.apply_freeu(
pipeline.final_unet,
async_task.freeu_b1,
async_task.freeu_b2,
async_task.freeu_s1,
async_task.freeu_s2
)
def patch_discrete(unet, scheduler_name):
return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0]
def patch_edm(unet, scheduler_name):
return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0]
def patch_samplers(async_task):
final_scheduler_name = async_task.scheduler_name
if async_task.scheduler_name in ['lcm', 'tcd']:
final_scheduler_name = 'sgm_uniform'
if pipeline.final_unet is not None:
pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name)
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name)
elif async_task.scheduler_name == 'edm_playground_v2.5':
final_scheduler_name = 'karras'
if pipeline.final_unet is not None:
pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name)
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name)
return final_scheduler_name
def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False):
print('Enter Hyper-SD mode.')
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...')
async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)]
if async_task.refiner_model_name != 'None':
print(f'Refiner disabled in Hyper-SD mode.')
async_task.refiner_model_name = 'None'
async_task.sampler_name = 'dpmpp_sde_gpu'
async_task.scheduler_name = 'karras'
async_task.sharpness = 0.0
async_task.cfg_scale = 1.0
async_task.adaptive_cfg = 1.0
async_task.refiner_switch = 1.0
async_task.adm_scaler_positive = 1.0
async_task.adm_scaler_negative = 1.0
async_task.adm_scaler_end = 0.0
return current_progress
def set_lightning_defaults(async_task, current_progress, advance_progress=False):
print('Enter Lightning mode.')
if advance_progress:
current_progress += 1
progressbar(async_task, 1, 'Downloading Lightning components ...')
async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)]
if async_task.refiner_model_name != 'None':
print(f'Refiner disabled in Lightning mode.')
async_task.refiner_model_name = 'None'
async_task.sampler_name = 'euler'
async_task.scheduler_name = 'sgm_uniform'
async_task.sharpness = 0.0
async_task.cfg_scale = 1.0
async_task.adaptive_cfg = 1.0
async_task.refiner_switch = 1.0
async_task.adm_scaler_positive = 1.0
async_task.adm_scaler_negative = 1.0
async_task.adm_scaler_end = 0.0
return current_progress
def set_lcm_defaults(async_task, current_progress, advance_progress=False):
print('Enter LCM mode.')
if advance_progress:
current_progress += 1
progressbar(async_task, 1, 'Downloading LCM components ...')
async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
if async_task.refiner_model_name != 'None':
print(f'Refiner disabled in LCM mode.')
async_task.refiner_model_name = 'None'
async_task.sampler_name = 'lcm'
async_task.scheduler_name = 'lcm'
async_task.sharpness = 0.0
async_task.cfg_scale = 1.0
async_task.adaptive_cfg = 1.0
async_task.refiner_switch = 1.0
async_task.adm_scaler_positive = 1.0
async_task.adm_scaler_negative = 1.0
async_task.adm_scaler_end = 0.0
return current_progress
def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path,
controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask,
inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path,
skip_prompt_processing, use_synthetic_refiner):
if (async_task.current_tab == 'uov' or (
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \
and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None:
async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale(
async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection,
async_task.steps, 1, skip_prompt_processing=skip_prompt_processing)
if (async_task.current_tab == 'inpaint' or (
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \
and isinstance(async_task.inpaint_input_image, dict):
inpaint_image = async_task.inpaint_input_image['image']
inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0]
if async_task.inpaint_advanced_masking_checkbox:
if isinstance(async_task.inpaint_mask_image_upload, dict):
if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray)
and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray)
and async_task.inpaint_mask_image_upload['image'].ndim == 3):
async_task.inpaint_mask_image_upload = np.maximum(
async_task.inpaint_mask_image_upload['image'],
async_task.inpaint_mask_image_upload['mask'])
if isinstance(async_task.inpaint_mask_image_upload,
np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3:
H, W, C = inpaint_image.shape
async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload,
width=W, height=H)
async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2)
async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype(
np.uint8) * 255
inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload)
if int(async_task.inpaint_erode_or_dilate) != 0:
inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate)
if async_task.invert_mask_checkbox:
inpaint_mask = 255 - inpaint_mask
inpaint_image = HWC3(inpaint_image)
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0):
progressbar(async_task, 1, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
if inpaint_parameterized:
progressbar(async_task, 1, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
async_task.inpaint_engine)
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
if async_task.refiner_model_name == 'None':
use_synthetic_refiner = True
async_task.refiner_switch = 0.8
else:
inpaint_head_model_path, inpaint_patch_model_path = None, None
print(f'[Inpaint] Parameterized inpaint is disabled.')
if async_task.inpaint_additional_prompt != '':
if async_task.prompt == '':
async_task.prompt = async_task.inpaint_additional_prompt
else:
async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt
goals.append('inpaint')
if async_task.current_tab == 'ip' or \
async_task.mixing_image_prompt_and_vary_upscale or \
async_task.mixing_image_prompt_and_inpaint:
goals.append('cn')
progressbar(async_task, 1, 'Downloading control models ...')
if len(async_task.cn_tasks[flags.cn_canny]) > 0:
controlnet_canny_path = modules.config.downloading_controlnet_canny()
if len(async_task.cn_tasks[flags.cn_cpds]) > 0:
controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
if len(async_task.cn_tasks[flags.cn_ip]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
if len(async_task.cn_tasks[flags.cn_ip_face]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
'face')
if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None:
goals.append('enhance')
skip_prompt_processing = True
async_task.enhance_input_image = HWC3(async_task.enhance_input_image)
return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner
def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress,
advance_progress=False, skip_prompt_processing=False):
uov_input_image = HWC3(uov_input_image)
if 'vary' in uov_method:
goals.append('vary')
elif 'upscale' in uov_method:
goals.append('upscale')
if 'fast' in uov_method:
skip_prompt_processing = True
steps = 0
else:
steps = performance.steps_uov()
if advance_progress:
current_progress += 1
progressbar(async_task, current_progress, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
return uov_input_image, skip_prompt_processing, steps
def prepare_enhance_prompt(prompt: str, fallback_prompt: str):
if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0:
prompt = fallback_prompt
return prompt
def stop_processing(async_task, processing_start_time):
async_task.processing = False
processing_time = time.perf_counter() - processing_start_time
print(f'Processing time (total): {processing_time:.2f} seconds')
def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent,
inpaint_engine, inpaint_respective_field, inpaint_strength,
prompt, negative_prompt, final_scheduler_name, goals, height, img, mask,
preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style,
use_synthetic_refiner, width, show_intermediate_results=True):
base_model_additional_loras = []
inpaint_head_model_path = None
inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail
initial_latent = None
prompt = prepare_enhance_prompt(prompt, async_task.prompt)
negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt)
if 'vary' in goals:
img, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress)
if 'upscale' in goals:
direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale(
async_task, img, async_task.enhance_uov_method, switch, current_progress)
if direct_return:
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
img = default_censor(img)
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
uov_image_path = log(img, d, output_format=async_task.output_format)
yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False,
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
return current_progress, img, prompt, negative_prompt
if 'inpaint' in goals and inpaint_parameterized:
progressbar(async_task, current_progress, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
inpaint_engine)
if inpaint_patch_model_path not in base_model_additional_loras:
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
progressbar(async_task, current_progress, 'Preparing enhance prompts ...')
# positive and negative conditioning aren't available here anymore, process prompt again
tasks_enhance, use_expansion, loras, current_progress = process_prompt(
async_task, prompt, negative_prompt, base_model_additional_loras, 1, True,
use_expansion, use_style, use_synthetic_refiner, current_progress)
task_enhance = tasks_enhance[0]
# TODO could support vary, upscale and CN in the future
# if 'cn' in goals:
# apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width)
if async_task.freeu_enabled:
apply_freeu(async_task)
patch_samplers(async_task)
if 'inpaint' in goals:
denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(
async_task, None, inpaint_head_model_path, img, mask,
inpaint_parameterized, inpaint_strength,
inpaint_respective_field, switch, inpaint_disable_initial_latent,
current_progress, True)
imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path,
controlnet_cpds_path, current_task_id, denoising_strength,
final_scheduler_name, goals, initial_latent, steps, switch,
task_enhance['c'], task_enhance['uc'], task_enhance, loras,
tiled, use_expansion, width, height, current_progress,
preparation_steps, total_count, show_intermediate_results)
del task_enhance['c'], task_enhance['uc'] # Save memory
return current_progress, imgs[0], prompt, negative_prompt
def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled,
total_count, use_expansion, use_style, use_synthetic_refiner, width):
# reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting
inpaint_worker.current_task = None
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
goals_enhance = []
img, skip_prompt_processing, steps = prepare_upscale(
async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection,
enhance_steps, current_progress)
steps, _, _, _ = apply_overrides(async_task, steps, height, width)
exception_result = ''
if len(goals_enhance) > 0:
try:
current_progress, img, prompt, negative_prompt = process_enhance(
all_steps, async_task, callback, controlnet_canny_path,
controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False,
'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name,
goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count,
use_expansion, use_style, use_synthetic_refiner, width)
except ldm_patched.modules.model_management.InterruptProcessingException:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
# also skip all enhance steps for this image, but add the steps to the progress bar
if async_task.enhance_uov_processing_order == flags.enhancement_uov_before:
done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps
exception_result = 'continue'
else:
print('User stopped')
exception_result = 'break'
finally:
done_steps_upscaling += steps
return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result
@torch.no_grad()
@torch.inference_mode()
def handler(async_task: AsyncTask):
preparation_start_time = time.perf_counter()
async_task.processing = True
async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections]
base_model_additional_loras = []
async_task.uov_method = async_task.uov_method.casefold()
async_task.enhance_uov_method = async_task.enhance_uov_method.casefold()
if fooocus_expansion in async_task.style_selections:
use_expansion = True
async_task.style_selections.remove(fooocus_expansion)
else:
use_expansion = False
use_style = len(async_task.style_selections) > 0
if async_task.base_model_name == async_task.refiner_model_name:
print(f'Refiner disabled because base model and refiner are same.')
async_task.refiner_model_name = 'None'
current_progress = 0
if async_task.performance_selection == Performance.EXTREME_SPEED:
set_lcm_defaults(async_task, current_progress, advance_progress=True)
elif async_task.performance_selection == Performance.LIGHTNING:
set_lightning_defaults(async_task, current_progress, advance_progress=True)
elif async_task.performance_selection == Performance.HYPER_SD:
set_hyper_sd_defaults(async_task, current_progress, advance_progress=True)
print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}')
print(f'[Parameters] CLIP Skip = {async_task.clip_skip}')
print(f'[Parameters] Sharpness = {async_task.sharpness}')
print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}')
print(f'[Parameters] ADM Scale = '
f'{async_task.adm_scaler_positive} : '
f'{async_task.adm_scaler_negative} : '
f'{async_task.adm_scaler_end}')
print(f'[Parameters] Seed = {async_task.seed}')
apply_patch_settings(async_task)
print(f'[Parameters] CFG = {async_task.cfg_scale}')
initial_latent = None
denoising_strength = 1.0
tiled = False
width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
width, height = int(width), int(height)
skip_prompt_processing = False
inpaint_worker.current_task = None
inpaint_parameterized = async_task.inpaint_engine != 'None'
inpaint_image = None
inpaint_mask = None
inpaint_head_model_path = None
use_synthetic_refiner = False
controlnet_canny_path = None
controlnet_cpds_path = None
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None
goals = []
tasks = []
current_progress = 1
if async_task.input_image_checkbox:
base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input(
async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path,
goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path,
ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner)
# Load or unload CNs
progressbar(async_task, current_progress, 'Loading control models ...')
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)
async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width)
print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}')
print(f'[Parameters] Steps = {async_task.steps} - {switch}')
progressbar(async_task, current_progress, 'Initializing ...')
loras = async_task.loras
if not skip_prompt_processing:
tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt,
base_model_additional_loras, async_task.image_number,
async_task.disable_seed_increment, use_expansion, use_style,
use_synthetic_refiner, current_progress, advance_progress=True)
if len(goals) > 0:
current_progress += 1
progressbar(async_task, current_progress, 'Image processing ...')
if 'vary' in goals:
async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch,
current_progress)
if 'upscale' in goals:
direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale(
async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress,
advance_progress=True)
if direct_return:
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
progressbar(async_task, 100, 'Checking for NSFW content ...')
async_task.uov_input_image = default_censor(async_task.uov_input_image)
progressbar(async_task, 100, 'Saving image to system ...')
uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format)
yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False,
do_not_show_finished_images=True)
return
if 'inpaint' in goals:
try:
denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(async_task,
initial_latent,
inpaint_head_model_path,
inpaint_image,
inpaint_mask,
inpaint_parameterized,
async_task.inpaint_strength,
async_task.inpaint_respective_field,
switch,
async_task.inpaint_disable_initial_latent,
current_progress,
advance_progress=True)
except EarlyReturnException:
return
if 'cn' in goals:
apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress)
if async_task.debugging_cn_preprocessor:
return
if async_task.freeu_enabled:
apply_freeu(async_task)
# async_task.steps can have value of uov steps here when upscale has been applied
steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width)
images_to_enhance = []
if 'enhance' in goals:
async_task.image_number = 1
images_to_enhance += [async_task.enhance_input_image]
height, width, _ = async_task.enhance_input_image.shape
# input image already provided, processing is skipped
steps = 0
all_steps = steps * async_task.image_number
if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold():
enhance_upscale_steps = async_task.performance_selection.steps()
if 'upscale' in async_task.enhance_uov_method:
if 'fast' in async_task.enhance_uov_method:
enhance_upscale_steps = 0
else:
enhance_upscale_steps = async_task.performance_selection.steps_uov()
enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width)
enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps
all_steps += enhance_upscale_steps_total
if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0:
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps
all_steps = max(all_steps, 1)
print(f'[Parameters] Denoising Strength = {denoising_strength}')
if isinstance(initial_latent, dict) and 'samples' in initial_latent:
log_shape = initial_latent['samples'].shape
else:
log_shape = f'Image Space {(height, width)}'
print(f'[Parameters] Initial Latent shape: {log_shape}')
preparation_time = time.perf_counter() - preparation_start_time
print(f'Preparation time: {preparation_time:.2f} seconds')
final_scheduler_name = patch_samplers(async_task)
print(f'Using {final_scheduler_name} scheduler.')
async_task.yields.append(['preview', (current_progress, 'Moving model to GPU ...', None)])
processing_start_time = time.perf_counter()
preparation_steps = current_progress
total_count = async_task.image_number
def callback(step, x0, x, total_steps, y):
if step == 0:
async_task.callback_steps = 0
async_task.callback_steps += (100 - preparation_steps) / float(all_steps)
async_task.yields.append(['preview', (
int(current_progress + async_task.callback_steps),
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)])
should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0)
show_intermediate_results = len(tasks) > 1 or should_enhance
for current_task_id, task in enumerate(tasks):
progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...')
execution_start_time = time.perf_counter()
try:
imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path,
controlnet_cpds_path, current_task_id,
denoising_strength, final_scheduler_name, goals,
initial_latent, async_task.steps, switch, task['c'],
task['uc'], task, loras, tiled, use_expansion, width,
height, current_progress, preparation_steps,
async_task.image_number, show_intermediate_results)
current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1))
images_to_enhance += imgs
except ldm_patched.modules.model_management.InterruptProcessingException:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
continue
else:
print('User stopped')
break
del task['c'], task['uc'] # Save memory
execution_time = time.perf_counter() - execution_start_time
print(f'Generating and saving time: {execution_time:.2f} seconds')
if not should_enhance:
print(f'[Enhance] Skipping, preconditions aren\'t met')
stop_processing(async_task, processing_start_time)
return
progressbar(async_task, current_progress, 'Processing enhance ...')
active_enhance_tabs = len(async_task.enhance_ctrls)
should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold()
if should_process_enhance_uov:
active_enhance_tabs += 1
total_count = len(images_to_enhance) * active_enhance_tabs
base_progress = current_progress
current_task_id = -1
done_steps_upscaling = 0
done_steps_inpainting = 0
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
exception_result = None
for img in images_to_enhance:
enhancement_image_start_time = time.perf_counter()
last_enhance_prompt = async_task.prompt
last_enhance_negative_prompt = async_task.negative_prompt
if should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_before:
current_task_id += 1
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps,
switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width)
if exception_result == 'continue':
continue
elif exception_result == 'break':
break
# inpaint for all other tabs
for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls:
current_task_id += 1
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...')
enhancement_task_start_time = time.perf_counter()
extras = {}
if enhance_mask_model == 'sam':
print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"')
elif enhance_mask_model == 'u2net_cloth_seg':
extras['cloth_category'] = enhance_mask_cloth_category
mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image(
img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions(
dino_prompt=enhance_mask_dino_prompt_text,
dino_box_threshold=enhance_mask_box_threshold,
dino_text_threshold=enhance_mask_text_threshold,
dino_erode_or_dilate=async_task.dino_erode_or_dilate,
dino_debug=async_task.debugging_dino,
max_detections=enhance_mask_sam_max_detections,
model_type=enhance_mask_sam_model,
))
if len(mask.shape) == 3:
mask = mask[:, :, 0]
if int(enhance_inpaint_erode_or_dilate) != 0:
mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate)
if enhance_mask_invert:
mask = 255 - mask
if async_task.debugging_enhance_masks_checkbox:
async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)])
yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False,
async_task.disable_intermediate_results)
print(f'[Enhance] {dino_detection_count} boxes detected')
print(f'[Enhance] {sam_detection_count} segments detected in boxes')
print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask')
if enhance_mask_model == 'sam' and (
dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping')
continue
goals_enhance = ['inpaint']
try:
current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance(
all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent,
enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength,
enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask,
preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style,
use_synthetic_refiner, width)
if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after
and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled):
if enhance_prompt_processed != '':
last_enhance_prompt = enhance_prompt_processed
if enhance_negative_prompt_processed != '':
last_enhance_negative_prompt = enhance_negative_prompt_processed
except ldm_patched.modules.model_management.InterruptProcessingException:
if async_task.last_stop == 'skip':
print('User skipped')
async_task.last_stop = False
continue
else:
print('User stopped')
exception_result = 'break'
break
finally:
done_steps_inpainting += enhance_steps
enhancement_task_time = time.perf_counter() - enhancement_task_start_time
print(f'Enhancement time: {enhancement_task_time:.2f} seconds')
if exception_result == 'break':
break
if should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after:
current_task_id += 1
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img,
preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner,
width)
if exception_result == 'continue':
continue
elif exception_result == 'break':
break
enhancement_image_time = time.perf_counter() - enhancement_image_start_time
print(f'Enhancement image time: {enhancement_image_time:.2f} seconds')
stop_processing(async_task, processing_start_time)
return
while True:
time.sleep(0.01)
if len(async_tasks) > 0:
task = async_tasks.pop(0)
try:
handler(task)
if task.generate_image_grid:
build_image_wall(task)
task.yields.append(['finish', task.results])
pipeline.prepare_text_encoder(async_call=True)
except:
traceback.print_exc()
task.yields.append(['finish', task.results])
finally:
if pid in modules.patch.patch_settings:
del modules.patch.patch_settings[pid]
pass
threading.Thread(target=worker, daemon=True).start()