diff --git a/webui.py b/webui.py index 1451dea3..19e1a403 100644 --- a/webui.py +++ b/webui.py @@ -1,19 +1,12 @@ import os import random +import torch from comfy.sd import load_checkpoint_guess_config -from comfy.model_management import unload_model - -from nodes import ( - VAEDecode, - KSamplerAdvanced, - EmptyLatentImage, - SaveImage, - CLIPTextEncode, -) - +from nodes import VAEDecode, KSamplerAdvanced, EmptyLatentImage, SaveImage, CLIPTextEncode from modules.path import modelfile_path + xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') @@ -25,28 +18,28 @@ opEmptyLatentImage = EmptyLatentImage() opKSamplerAdvanced = KSamplerAdvanced() opVAEDecode = VAEDecode() -positive_conditions = opCLIPTextEncode.encode(clip=xl_base_clip, text='a handsome man in forest')[0] -negative_conditions = opCLIPTextEncode.encode(clip=xl_base_clip, text='bad, ugly')[0] +with torch.no_grad(): + positive_conditions = opCLIPTextEncode.encode(clip=xl_base_clip, text='a handsome man in forest')[0] + negative_conditions = opCLIPTextEncode.encode(clip=xl_base_clip, text='bad, ugly')[0] -initial_latent_image = opEmptyLatentImage.generate(width=1024, height=1024, batch_size=1)[0] + initial_latent_image = opEmptyLatentImage.generate(width=1024, height=1024, batch_size=1)[0] -samples = opKSamplerAdvanced.sample( - add_noise="enable", - noise_seed=random.randint(1, 2 ** 64), - steps=25, - cfg=9, - sampler_name="euler", - scheduler="normal", - start_at_step=0, - end_at_step=25, - return_with_leftover_noise="enable", - model=xl_base, - positive=positive_conditions, - negative=negative_conditions, - latent_image=initial_latent_image, -)[0] -unload_model() + samples = opKSamplerAdvanced.sample( + add_noise="enable", + noise_seed=random.randint(1, 2 ** 64), + steps=25, + cfg=9, + sampler_name="euler", + scheduler="normal", + start_at_step=0, + end_at_step=25, + return_with_leftover_noise="enable", + model=xl_base, + positive=positive_conditions, + negative=negative_conditions, + latent_image=initial_latent_image, + )[0] -vae_decoded = opVAEDecode.decode(samples=samples, vae=xl_base_vae)[0] + vae_decoded = opVAEDecode.decode(samples=samples, vae=xl_base_vae)[0] -a = 0 + a = 0