Fooocus GitHub Bot Commit
This commit is generated by a GitHub bot of Fooocus
This commit is contained in:
parent
6f02c797c6
commit
f553d0fb18
|
|
@ -92,8 +92,11 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
|||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
else:
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
clip = ClipVisionModel(json_config)
|
||||
m, u = clip.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
|
|
|
|||
|
|
@ -26,6 +26,7 @@ class BaseModel(torch.nn.Module):
|
|||
self.adm_channels = unet_config.get("adm_in_channels", None)
|
||||
if self.adm_channels is None:
|
||||
self.adm_channels = 0
|
||||
self.inpaint_model = False
|
||||
print("model_type", model_type.name)
|
||||
print("adm", self.adm_channels)
|
||||
|
||||
|
|
@ -71,6 +72,38 @@ class BaseModel(torch.nn.Module):
|
|||
def encode_adm(self, **kwargs):
|
||||
return None
|
||||
|
||||
def cond_concat(self, **kwargs):
|
||||
if self.inpaint_model:
|
||||
concat_keys = ("mask", "masked_image")
|
||||
cond_concat = []
|
||||
denoise_mask = kwargs.get("denoise_mask", None)
|
||||
latent_image = kwargs.get("latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
blank_image[:,0] *= 0.8223
|
||||
blank_image[:,1] *= -0.6876
|
||||
blank_image[:,2] *= 0.6364
|
||||
blank_image[:,3] *= 0.1380
|
||||
return blank_image
|
||||
|
||||
for ck in concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1].to(device))
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(blank_inpaint_image_like(noise))
|
||||
return cond_concat
|
||||
return None
|
||||
|
||||
def load_model_weights(self, sd, unet_prefix=""):
|
||||
to_load = {}
|
||||
keys = list(sd.keys())
|
||||
|
|
@ -112,7 +145,7 @@ class BaseModel(torch.nn.Module):
|
|||
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
||||
|
||||
def set_inpaint(self):
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
self.inpaint_model = True
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
||||
adm_inputs = []
|
||||
|
|
|
|||
|
|
@ -14,8 +14,8 @@ def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
|||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns predicted noise
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
|
||||
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
||||
def get_area_and_mult(cond, x_in, timestep_in):
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
if 'timestep_start' in cond[1]:
|
||||
|
|
@ -68,12 +68,15 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|||
|
||||
conditionning = {}
|
||||
conditionning['c_crossattn'] = cond[0]
|
||||
if cond_concat_in is not None and len(cond_concat_in) > 0:
|
||||
cropped = []
|
||||
for x in cond_concat_in:
|
||||
cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
cropped.append(cr)
|
||||
conditionning['c_concat'] = torch.cat(cropped, dim=1)
|
||||
|
||||
if 'concat' in cond[1]:
|
||||
cond_concat_in = cond[1]['concat']
|
||||
if cond_concat_in is not None and len(cond_concat_in) > 0:
|
||||
cropped = []
|
||||
for x in cond_concat_in:
|
||||
cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
cropped.append(cr)
|
||||
conditionning['c_concat'] = torch.cat(cropped, dim=1)
|
||||
|
||||
if adm_cond is not None:
|
||||
conditionning['c_adm'] = adm_cond
|
||||
|
|
@ -173,7 +176,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|||
out['c_adm'] = torch.cat(c_adm)
|
||||
return out
|
||||
|
||||
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
|
||||
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, model_options):
|
||||
out_cond = torch.zeros_like(x_in)
|
||||
out_count = torch.ones_like(x_in)/100000.0
|
||||
|
||||
|
|
@ -185,14 +188,14 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|||
|
||||
to_run = []
|
||||
for x in cond:
|
||||
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
to_run += [(p, COND)]
|
||||
if uncond is not None:
|
||||
for x in uncond:
|
||||
p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
|
||||
p = get_area_and_mult(x, x_in, timestep)
|
||||
if p is None:
|
||||
continue
|
||||
|
||||
|
|
@ -286,7 +289,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|||
if math.isclose(cond_scale, 1.0):
|
||||
uncond = None
|
||||
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, model_options)
|
||||
if "sampler_cfg_function" in model_options:
|
||||
args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
|
||||
return model_options["sampler_cfg_function"](args)
|
||||
|
|
@ -307,8 +310,8 @@ class CFGNoisePredictor(torch.nn.Module):
|
|||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.alphas_cumprod = model.alphas_cumprod
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
|
||||
return out
|
||||
|
||||
|
||||
|
|
@ -316,11 +319,11 @@ class KSamplerX0Inpaint(torch.nn.Module):
|
|||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
|
||||
if denoise_mask is not None:
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
|
||||
if denoise_mask is not None:
|
||||
out *= denoise_mask
|
||||
|
||||
|
|
@ -358,15 +361,6 @@ def sgm_scheduler(model, steps):
|
|||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def blank_inpaint_image_like(latent_image):
|
||||
blank_image = torch.ones_like(latent_image)
|
||||
# these are the values for "zero" in pixel space translated to latent space
|
||||
blank_image[:,0] *= 0.8223
|
||||
blank_image[:,1] *= -0.6876
|
||||
blank_image[:,2] *= 0.6364
|
||||
blank_image[:,3] *= 0.1380
|
||||
return blank_image
|
||||
|
||||
def get_mask_aabb(masks):
|
||||
if masks.numel() == 0:
|
||||
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
|
||||
|
|
@ -543,6 +537,20 @@ def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
|
|||
|
||||
return conds
|
||||
|
||||
def encode_cond(model_function, key, conds, device, **kwargs):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
params = x[1].copy()
|
||||
params["device"] = device
|
||||
for k in kwargs:
|
||||
if k not in params:
|
||||
params[k] = kwargs[k]
|
||||
|
||||
out = model_function(**params)
|
||||
if out is not None:
|
||||
x[1] = x[1].copy()
|
||||
x[1][key] = out
|
||||
return conds
|
||||
|
||||
class Sampler:
|
||||
def sample(self):
|
||||
|
|
@ -662,31 +670,19 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
|||
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
if latent_image is not None:
|
||||
latent_image = model.process_latent_in(latent_image)
|
||||
|
||||
if model.is_adm():
|
||||
positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
|
||||
negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
|
||||
|
||||
if latent_image is not None:
|
||||
latent_image = model.process_latent_in(latent_image)
|
||||
if hasattr(model, 'cond_concat'):
|
||||
positive = encode_cond(model.cond_concat, "concat", positive, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
|
||||
negative = encode_cond(model.cond_concat, "concat", negative, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
|
||||
|
||||
cond_concat = None
|
||||
if hasattr(model, 'concat_keys'): #inpaint
|
||||
cond_concat = []
|
||||
for ck in model.concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(blank_inpaint_image_like(noise))
|
||||
extra_args["cond_concat"] = cond_concat
|
||||
|
||||
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
|
|
|
|||
|
|
@ -434,10 +434,11 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|||
if output_clip:
|
||||
w = WeightsLoader()
|
||||
clip_target = model_config.clip_target()
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
sd = model_config.process_clip_state_dict(sd)
|
||||
load_model_weights(w, sd)
|
||||
if clip_target is not None:
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
sd = model_config.process_clip_state_dict(sd)
|
||||
load_model_weights(w, sd)
|
||||
|
||||
left_over = sd.keys()
|
||||
if len(left_over) > 0:
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
version = '2.1.705'
|
||||
version = '2.1.707'
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ from fcbh.model_base import SDXLRefiner, SDXL
|
|||
from fcbh.sample import get_additional_models, get_models_from_cond, cleanup_additional_models
|
||||
from fcbh.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \
|
||||
create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_adm, \
|
||||
blank_inpaint_image_like
|
||||
encode_cond
|
||||
|
||||
|
||||
current_refiner = None
|
||||
|
|
@ -77,10 +77,19 @@ def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas
|
|||
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
if latent_image is not None:
|
||||
latent_image = model.process_latent_in(latent_image)
|
||||
|
||||
if model.is_adm():
|
||||
positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
|
||||
negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
|
||||
|
||||
if hasattr(model, 'cond_concat'):
|
||||
positive = encode_cond(model.cond_concat, "concat", positive, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
|
||||
negative = encode_cond(model.cond_concat, "concat", negative, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
|
||||
|
||||
if current_refiner is not None and current_refiner.model.is_adm():
|
||||
positive_refiner = clip_separate(positive, target_model=current_refiner.model)
|
||||
negative_refiner = clip_separate(negative, target_model=current_refiner.model)
|
||||
|
|
@ -91,27 +100,6 @@ def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas
|
|||
positive_refiner[0][1]['adm_encoded'].to(positive[0][1]['adm_encoded'])
|
||||
negative_refiner[0][1]['adm_encoded'].to(negative[0][1]['adm_encoded'])
|
||||
|
||||
if latent_image is not None:
|
||||
latent_image = model.process_latent_in(latent_image)
|
||||
|
||||
extra_args = {"cond": positive, "uncond": negative, "cond_scale": cfg, "model_options": model_options, "seed": seed}
|
||||
|
||||
cond_concat = None
|
||||
if hasattr(model, 'concat_keys'): # inpaint
|
||||
cond_concat = []
|
||||
for ck in model.concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:, :1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(blank_inpaint_image_like(noise))
|
||||
extra_args["cond_concat"] = cond_concat
|
||||
|
||||
def refiner_switch():
|
||||
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue