commit
f0dcf5a911
|
|
@ -216,9 +216,9 @@ def is_url(url_or_filename):
|
|||
def load_checkpoint(model,url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
||||
checkpoint = torch.load(cached_file, map_location='cpu')
|
||||
checkpoint = torch.load(cached_file, map_location='cpu', weights_only=True)
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu', weights_only=True)
|
||||
else:
|
||||
raise RuntimeError('checkpoint url or path is invalid')
|
||||
|
||||
|
|
|
|||
|
|
@ -78,9 +78,9 @@ def blip_nlvr(pretrained='',**kwargs):
|
|||
def load_checkpoint(model,url_or_filename):
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
||||
checkpoint = torch.load(cached_file, map_location='cpu')
|
||||
checkpoint = torch.load(cached_file, map_location='cpu', weights_only=True)
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
||||
checkpoint = torch.load(url_or_filename, map_location='cpu', weights_only=True)
|
||||
else:
|
||||
raise RuntimeError('checkpoint url or path is invalid')
|
||||
state_dict = checkpoint['model']
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ def init_detection_model(model_name, half=False, device='cuda', model_rootpath=N
|
|||
url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
|
||||
|
||||
# TODO: clean pretrained model
|
||||
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
||||
load_net = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
|
||||
# remove unnecessary 'module.'
|
||||
for k, v in deepcopy(load_net).items():
|
||||
if k.startswith('module.'):
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_ro
|
|||
|
||||
model_path = load_file_from_url(
|
||||
url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
|
||||
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
||||
load_net = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
|
||||
model.load_state_dict(load_net, strict=True)
|
||||
model.eval()
|
||||
model = model.to(device)
|
||||
|
|
|
|||
|
|
@ -104,7 +104,7 @@ def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path):
|
|||
offload_device = torch.device('cpu')
|
||||
|
||||
use_fp16 = model_management.should_use_fp16(device=load_device)
|
||||
ip_state_dict = torch.load(ip_adapter_path, map_location="cpu")
|
||||
ip_state_dict = torch.load(ip_adapter_path, map_location="cpu", weights_only=True)
|
||||
plus = "latents" in ip_state_dict["image_proj"]
|
||||
cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
|
||||
sdxl = cross_attention_dim == 2048
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
version = '2.5.2'
|
||||
version = '2.5.3'
|
||||
|
|
|
|||
|
|
@ -17,6 +17,7 @@
|
|||
"Content Type": "Content Type",
|
||||
"Photograph": "Photograph",
|
||||
"Art/Anime": "Art/Anime",
|
||||
"Appy Styles": "Appy Styles",
|
||||
"Describe this Image into Prompt": "Describe this Image into Prompt",
|
||||
"Image Size and Recommended Size": "Image Size and Recommended Size",
|
||||
"Upscale or Variation:": "Upscale or Variation:",
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
|
|||
if clip_stats_path is None:
|
||||
clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
|
||||
else:
|
||||
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
|
||||
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu", weights_only=True)
|
||||
self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
|
||||
self.register_buffer("data_std", clip_std[None, :], persistent=False)
|
||||
self.time_embed = Timestep(timestep_dim)
|
||||
|
|
|
|||
|
|
@ -326,7 +326,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
|||
except:
|
||||
embed_out = safe_load_embed_zip(embed_path)
|
||||
else:
|
||||
embed = torch.load(embed_path, map_location="cpu")
|
||||
embed = torch.load(embed_path, map_location="cpu", weights_only=True)
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
print()
|
||||
|
|
|
|||
|
|
@ -377,15 +377,15 @@ class VQAutoEncoder(nn.Module):
|
|||
)
|
||||
|
||||
if model_path is not None:
|
||||
chkpt = torch.load(model_path, map_location="cpu")
|
||||
chkpt = torch.load(model_path, map_location="cpu", weights_only=True)
|
||||
if "params_ema" in chkpt:
|
||||
self.load_state_dict(
|
||||
torch.load(model_path, map_location="cpu")["params_ema"]
|
||||
torch.load(model_path, map_location="cpu", weights_only=True)["params_ema"]
|
||||
)
|
||||
logger.info(f"vqgan is loaded from: {model_path} [params_ema]")
|
||||
elif "params" in chkpt:
|
||||
self.load_state_dict(
|
||||
torch.load(model_path, map_location="cpu")["params"]
|
||||
torch.load(model_path, map_location="cpu", weights_only=True)["params"]
|
||||
)
|
||||
logger.info(f"vqgan is loaded from: {model_path} [params]")
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -273,8 +273,8 @@ class GFPGANBilinear(nn.Module):
|
|||
if decoder_load_path:
|
||||
self.stylegan_decoder.load_state_dict(
|
||||
torch.load(
|
||||
decoder_load_path, map_location=lambda storage, loc: storage
|
||||
)["params_ema"]
|
||||
decoder_load_path, map_location=lambda storage, loc: storage,
|
||||
weights_only=True)["params_ema"]
|
||||
)
|
||||
# fix decoder without updating params
|
||||
if fix_decoder:
|
||||
|
|
|
|||
|
|
@ -373,8 +373,8 @@ class GFPGANv1(nn.Module):
|
|||
if decoder_load_path:
|
||||
self.stylegan_decoder.load_state_dict(
|
||||
torch.load(
|
||||
decoder_load_path, map_location=lambda storage, loc: storage
|
||||
)["params_ema"]
|
||||
decoder_load_path, map_location=lambda storage, loc: storage,
|
||||
weights_only=True)["params_ema"]
|
||||
)
|
||||
# fix decoder without updating params
|
||||
if fix_decoder:
|
||||
|
|
|
|||
|
|
@ -284,8 +284,8 @@ class GFPGANv1Clean(nn.Module):
|
|||
if decoder_load_path:
|
||||
self.stylegan_decoder.load_state_dict(
|
||||
torch.load(
|
||||
decoder_load_path, map_location=lambda storage, loc: storage
|
||||
)["params_ema"]
|
||||
decoder_load_path, map_location=lambda storage, loc: storage,
|
||||
weights_only=True)["params_ema"]
|
||||
)
|
||||
# fix decoder without updating params
|
||||
if fix_decoder:
|
||||
|
|
|
|||
|
|
@ -702,6 +702,19 @@ default_inpaint_mask_sam_model = get_config_item_or_set_default(
|
|||
expected_type=str
|
||||
)
|
||||
|
||||
default_describe_apply_prompts_checkbox = get_config_item_or_set_default(
|
||||
key='default_describe_apply_prompts_checkbox',
|
||||
default_value=True,
|
||||
validator=lambda x: isinstance(x, bool),
|
||||
expected_type=bool
|
||||
)
|
||||
default_describe_content_type = get_config_item_or_set_default(
|
||||
key='default_describe_content_type',
|
||||
default_value=[modules.flags.describe_type_photo],
|
||||
validator=lambda x: all(k in modules.flags.describe_types for k in x),
|
||||
expected_type=list
|
||||
)
|
||||
|
||||
config_dict["default_loras"] = default_loras = default_loras[:default_max_lora_number] + [[True, 'None', 1.0] for _ in range(default_max_lora_number - len(default_loras))]
|
||||
|
||||
# mapping config to meta parameter
|
||||
|
|
|
|||
|
|
@ -231,7 +231,7 @@ def get_previewer(model):
|
|||
if vae_approx_filename in VAE_approx_models:
|
||||
VAE_approx_model = VAE_approx_models[vae_approx_filename]
|
||||
else:
|
||||
sd = torch.load(vae_approx_filename, map_location='cpu')
|
||||
sd = torch.load(vae_approx_filename, map_location='cpu', weights_only=True)
|
||||
VAE_approx_model = VAEApprox()
|
||||
VAE_approx_model.load_state_dict(sd)
|
||||
del sd
|
||||
|
|
|
|||
|
|
@ -96,6 +96,7 @@ inpaint_options = [inpaint_option_default, inpaint_option_detail, inpaint_option
|
|||
|
||||
describe_type_photo = 'Photograph'
|
||||
describe_type_anime = 'Art/Anime'
|
||||
describe_types = [describe_type_photo, describe_type_anime]
|
||||
|
||||
sdxl_aspect_ratios = [
|
||||
'704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152',
|
||||
|
|
|
|||
|
|
@ -196,7 +196,7 @@ class InpaintWorker:
|
|||
|
||||
if inpaint_head_model is None:
|
||||
inpaint_head_model = InpaintHead()
|
||||
sd = torch.load(inpaint_head_model_path, map_location='cpu')
|
||||
sd = torch.load(inpaint_head_model_path, map_location='cpu', weights_only=True)
|
||||
inpaint_head_model.load_state_dict(sd)
|
||||
|
||||
feed = torch.cat([
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@ def perform_upscale(img):
|
|||
|
||||
if model is None:
|
||||
model_filename = downloading_upscale_model()
|
||||
sd = torch.load(model_filename)
|
||||
sd = torch.load(model_filename, weights_only=True)
|
||||
sdo = OrderedDict()
|
||||
for k, v in sd.items():
|
||||
sdo[k.replace('residual_block_', 'RDB')] = v
|
||||
|
|
|
|||
|
|
@ -1,3 +1,10 @@
|
|||
# [2.5.3](https://github.com/lllyasviel/Fooocus/releases/tag/v2.5.3)
|
||||
|
||||
* Fix prompt bug when only negative styles are selected
|
||||
* Add various config settings for image input, see list in [PR](https://github.com/lllyasviel/Fooocus/pull/3382)
|
||||
* Only load weights from non-safetensors files, preventing harmful code injection
|
||||
* Add checkbox for applying/resetting styles when describing images, also allowing multiple describe content types
|
||||
|
||||
# [2.5.2](https://github.com/lllyasviel/Fooocus/releases/tag/v2.5.2)
|
||||
|
||||
* Fix not adding positive prompt when styles didn't have a {prompt} placeholder in the positive prompt
|
||||
|
|
|
|||
61
webui.py
61
webui.py
|
|
@ -337,10 +337,11 @@ with shared.gradio_root:
|
|||
with gr.Column():
|
||||
describe_input_image = grh.Image(label='Image', source='upload', type='numpy', show_label=False)
|
||||
with gr.Column():
|
||||
describe_method = gr.Radio(
|
||||
describe_methods = gr.CheckboxGroup(
|
||||
label='Content Type',
|
||||
choices=[flags.describe_type_photo, flags.describe_type_anime],
|
||||
value=flags.describe_type_photo)
|
||||
choices=flags.describe_types,
|
||||
value=modules.config.default_describe_content_type)
|
||||
describe_apply_styles = gr.Checkbox(label='Appy Styles', value=modules.config.default_describe_apply_prompts_checkbox)
|
||||
describe_btn = gr.Button(value='Describe this Image into Prompt')
|
||||
describe_image_size = gr.Textbox(label='Image Size and Recommended Size', elem_id='describe_image_size', visible=False)
|
||||
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/1363" target="_blank">\U0001F4D4 Documentation</a>')
|
||||
|
|
@ -1060,30 +1061,54 @@ with shared.gradio_root:
|
|||
gr.Audio(interactive=False, value=notification_file, elem_id='audio_notification', visible=False)
|
||||
break
|
||||
|
||||
def trigger_describe(mode, img):
|
||||
if mode == flags.describe_type_photo:
|
||||
from extras.interrogate import default_interrogator as default_interrogator_photo
|
||||
return default_interrogator_photo(img), ["Fooocus V2", "Fooocus Enhance", "Fooocus Sharp"]
|
||||
if mode == flags.describe_type_anime:
|
||||
from extras.wd14tagger import default_interrogator as default_interrogator_anime
|
||||
return default_interrogator_anime(img), ["Fooocus V2", "Fooocus Masterpiece"]
|
||||
return mode, ["Fooocus V2"]
|
||||
def trigger_describe(modes, img, apply_styles):
|
||||
describe_prompts = []
|
||||
styles = set()
|
||||
|
||||
describe_btn.click(trigger_describe, inputs=[describe_method, describe_input_image],
|
||||
outputs=[prompt, style_selections], show_progress=True, queue=True)
|
||||
if flags.describe_type_photo in modes:
|
||||
from extras.interrogate import default_interrogator as default_interrogator_photo
|
||||
describe_prompts.append(default_interrogator_photo(img))
|
||||
styles.update(["Fooocus V2", "Fooocus Enhance", "Fooocus Sharp"])
|
||||
|
||||
if flags.describe_type_anime in modes:
|
||||
from extras.wd14tagger import default_interrogator as default_interrogator_anime
|
||||
describe_prompts.append(default_interrogator_anime(img))
|
||||
styles.update(["Fooocus V2", "Fooocus Masterpiece"])
|
||||
|
||||
if len(styles) == 0 or not apply_styles:
|
||||
styles = gr.update()
|
||||
else:
|
||||
styles = list(styles)
|
||||
|
||||
if len(describe_prompts) == 0:
|
||||
describe_prompt = gr.update()
|
||||
else:
|
||||
describe_prompt = ', '.join(describe_prompts)
|
||||
|
||||
return describe_prompt, styles
|
||||
|
||||
describe_btn.click(trigger_describe, inputs=[describe_methods, describe_input_image, describe_apply_styles],
|
||||
outputs=[prompt, style_selections], show_progress=True, queue=True) \
|
||||
.then(fn=style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False) \
|
||||
.then(lambda: None, _js='()=>{refresh_style_localization();}')
|
||||
|
||||
if args_manager.args.enable_auto_describe_image:
|
||||
def trigger_auto_describe(mode, img, prompt):
|
||||
def trigger_auto_describe(mode, img, prompt, apply_styles):
|
||||
# keep prompt if not empty
|
||||
if prompt == '':
|
||||
return trigger_describe(mode, img)
|
||||
return trigger_describe(mode, img, apply_styles)
|
||||
return gr.update(), gr.update()
|
||||
|
||||
uov_input_image.upload(trigger_auto_describe, inputs=[describe_method, uov_input_image, prompt],
|
||||
outputs=[prompt, style_selections], show_progress=True, queue=True)
|
||||
uov_input_image.upload(trigger_auto_describe, inputs=[describe_methods, uov_input_image, prompt, describe_apply_styles],
|
||||
outputs=[prompt, style_selections], show_progress=True, queue=True) \
|
||||
.then(fn=style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False) \
|
||||
.then(lambda: None, _js='()=>{refresh_style_localization();}')
|
||||
|
||||
enhance_input_image.upload(lambda: gr.update(value=True), outputs=enhance_checkbox, queue=False, show_progress=False) \
|
||||
.then(trigger_auto_describe, inputs=[describe_method, enhance_input_image, prompt], outputs=[prompt, style_selections], show_progress=True, queue=True)
|
||||
.then(trigger_auto_describe, inputs=[describe_methods, enhance_input_image, prompt, describe_apply_styles],
|
||||
outputs=[prompt, style_selections], show_progress=True, queue=True) \
|
||||
.then(fn=style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False) \
|
||||
.then(lambda: None, _js='()=>{refresh_style_localization();}')
|
||||
|
||||
def dump_default_english_config():
|
||||
from modules.localization import dump_english_config
|
||||
|
|
|
|||
Loading…
Reference in New Issue