This commit is contained in:
parent
723a4b60d9
commit
e42c2f62ac
|
|
@ -142,6 +142,70 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sa
|
|||
return out
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive, refiner_negative, latent,
|
||||
seed=None, steps=30, refiner_switch_step=20, cfg=9.0, sampler_name='dpmpp_2m_sde',
|
||||
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
|
||||
force_full_denoise=False):
|
||||
seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64)
|
||||
|
||||
device = comfy.model_management.get_torch_device()
|
||||
latent_image = latent["samples"]
|
||||
|
||||
if disable_noise:
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
else:
|
||||
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
||||
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
|
||||
|
||||
noise_mask = None
|
||||
if "noise_mask" in latent:
|
||||
noise_mask = latent["noise_mask"]
|
||||
|
||||
previewer = get_previewer(device, model.model.latent_format)
|
||||
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
def callback(step, x0, x, total_steps):
|
||||
if previewer and step % 3 == 0:
|
||||
previewer.preview(x0, step, total_steps)
|
||||
pbar.update_absolute(step + 1, total_steps, None)
|
||||
|
||||
sigmas = None
|
||||
disable_pbar = False
|
||||
|
||||
if noise_mask is not None:
|
||||
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
||||
|
||||
comfy.model_management.load_model_gpu(model)
|
||||
real_model = model.model
|
||||
|
||||
noise = noise.to(device)
|
||||
latent_image = latent_image.to(device)
|
||||
|
||||
positive_copy = broadcast_cond(positive, noise.shape[0], device)
|
||||
negative_copy = broadcast_cond(negative, noise.shape[0], device)
|
||||
|
||||
models = load_additional_models(positive, negative, model.model_dtype())
|
||||
|
||||
sampler = KSamplerWithRefiner(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
|
||||
denoise=denoise, model_options=model.model_options)
|
||||
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
||||
start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise,
|
||||
denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar,
|
||||
seed=seed)
|
||||
|
||||
samples = samples.cpu()
|
||||
|
||||
cleanup_additional_models(models)
|
||||
|
||||
out = latent.copy()
|
||||
out["samples"] = samples
|
||||
|
||||
return out
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def image_to_numpy(x):
|
||||
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
|
||||
|
|
|
|||
|
|
@ -23,20 +23,16 @@ def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_siz
|
|||
|
||||
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size)
|
||||
|
||||
sampled_latent = core.ksampler(
|
||||
sampled_latent = core.ksampler_with_refiner(
|
||||
model=xl_base.unet,
|
||||
positive=positive_conditions,
|
||||
negative=negative_conditions,
|
||||
refiner=xl_refiner,
|
||||
refiner_positive=positive_conditions_refiner,
|
||||
refiner_negative=negative_conditions_refiner,
|
||||
refiner_switch_step=20,
|
||||
latent=empty_latent,
|
||||
steps=30, start_step=0, last_step=20, disable_noise=False, force_full_denoise=False
|
||||
)
|
||||
|
||||
sampled_latent = core.ksampler(
|
||||
model=xl_refiner.unet,
|
||||
positive=positive_conditions_refiner,
|
||||
negative=negative_conditions_refiner,
|
||||
latent=sampled_latent,
|
||||
steps=30, start_step=20, last_step=30, disable_noise=True, force_full_denoise=True
|
||||
steps=30, start_step=0, last_step=30, disable_noise=False, force_full_denoise=True
|
||||
)
|
||||
|
||||
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
|
||||
|
|
|
|||
Loading…
Reference in New Issue