Merge branch 'feature/progress-bar'

# Conflicts:
#	fooocus_version.py
#	modules/async_worker.py
#	webui.py
This commit is contained in:
Manuel Schmid 2024-05-19 20:52:30 +02:00
commit dd5a14ac7f
No known key found for this signature in database
GPG Key ID: 32C4F7569B40B84B
20 changed files with 598 additions and 151 deletions

View File

@ -27,6 +27,7 @@ progress {
border-radius: 5px; /* Round the corners of the progress bar */
background-color: #f3f3f3; /* Light grey background */
width: 100%;
vertical-align: middle !important;
}
/* Style the progress bar container */
@ -69,6 +70,11 @@ progress::after {
height: 30px !important;
}
.progress-bar span {
text-align: right;
width: 200px;
}
.type_row{
height: 80px !important;
}

11
development.md Normal file
View File

@ -0,0 +1,11 @@
## Running unit tests
Native python:
```
python -m unittest tests/
```
Embedded python (Windows zip file installation method):
```
..\python_embeded\python.exe -m unittest
```

60
extras/censor.py Normal file
View File

@ -0,0 +1,60 @@
import os
import numpy as np
import torch
from transformers import CLIPConfig, CLIPImageProcessor
import ldm_patched.modules.model_management as model_management
import modules.config
from extras.safety_checker.models.safety_checker import StableDiffusionSafetyChecker
from ldm_patched.modules.model_patcher import ModelPatcher
safety_checker_repo_root = os.path.join(os.path.dirname(__file__), 'safety_checker')
config_path = os.path.join(safety_checker_repo_root, "configs", "config.json")
preprocessor_config_path = os.path.join(safety_checker_repo_root, "configs", "preprocessor_config.json")
class Censor:
def __init__(self):
self.safety_checker_model: ModelPatcher | None = None
self.clip_image_processor: CLIPImageProcessor | None = None
self.load_device = torch.device('cpu')
self.offload_device = torch.device('cpu')
def init(self):
if self.safety_checker_model is None and self.clip_image_processor is None:
safety_checker_model = modules.config.downloading_safety_checker_model()
self.clip_image_processor = CLIPImageProcessor.from_json_file(preprocessor_config_path)
clip_config = CLIPConfig.from_json_file(config_path)
model = StableDiffusionSafetyChecker.from_pretrained(safety_checker_model, config=clip_config)
model.eval()
self.load_device = model_management.text_encoder_device()
self.offload_device = model_management.text_encoder_offload_device()
model.to(self.offload_device)
self.safety_checker_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device)
def censor(self, images: list | np.ndarray) -> list | np.ndarray:
self.init()
model_management.load_model_gpu(self.safety_checker_model)
single = False
if not isinstance(images, list) or isinstance(images, np.ndarray):
images = [images]
single = True
safety_checker_input = self.clip_image_processor(images, return_tensors="pt")
safety_checker_input.to(device=self.load_device)
checked_images, has_nsfw_concept = self.safety_checker_model.model(images=images,
clip_input=safety_checker_input.pixel_values)
checked_images = [image.astype(np.uint8) for image in checked_images]
if single:
checked_images = checked_images[0]
return checked_images
default_censor = Censor().censor

View File

@ -0,0 +1,171 @@
{
"_name_or_path": "clip-vit-large-patch14/",
"architectures": [
"SafetyChecker"
],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
"text_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 1,
"prefix": null,
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.21.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false,
"vocab_size": 49408
},
"text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12
},
"torch_dtype": "float32",
"transformers_version": null,
"vision_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"min_length": 0,
"model_type": "clip_vision_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 16,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 24,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": null,
"patch_size": 14,
"prefix": null,
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.21.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false
},
"vision_config_dict": {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14
}
}

View File

@ -0,0 +1,20 @@
{
"crop_size": 224,
"do_center_crop": true,
"do_convert_rgb": true,
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "CLIPFeatureExtractor",
"image_mean": [
0.48145466,
0.4578275,
0.40821073
],
"image_std": [
0.26862954,
0.26130258,
0.27577711
],
"resample": 3,
"size": 224
}

View File

@ -0,0 +1,126 @@
# from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
def cosine_distance(image_embeds, text_embeds):
normalized_image_embeds = nn.functional.normalize(image_embeds)
normalized_text_embeds = nn.functional.normalize(text_embeds)
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
class StableDiffusionSafetyChecker(PreTrainedModel):
config_class = CLIPConfig
main_input_name = "clip_input"
_no_split_modules = ["CLIPEncoderLayer"]
def __init__(self, config: CLIPConfig):
super().__init__(config)
self.vision_model = CLIPVisionModel(config.vision_config)
self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)
self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False)
@torch.no_grad()
def forward(self, clip_input, images):
pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
result = []
batch_size = image_embeds.shape[0]
for i in range(batch_size):
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0
for concept_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concept_idx]
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
adjustment = 0.01
for concept_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concept_idx]
concept_threshold = self.concept_embeds_weights[concept_idx].item()
result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(concept_idx)
result.append(result_img)
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if torch.is_tensor(images) or torch.is_tensor(images[0]):
images[idx] = torch.zeros_like(images[idx]) # black image
else:
images[idx] = np.zeros(images[idx].shape) # black image
if any(has_nsfw_concepts):
logger.warning(
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
" Try again with a different prompt and/or seed."
)
return images, has_nsfw_concepts
@torch.no_grad()
def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor):
pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output)
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0
special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
special_care = torch.any(special_scores > 0, dim=1)
special_adjustment = special_care * 0.01
special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1])
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
images[has_nsfw_concepts] = 0.0 # black image
return images, has_nsfw_concepts

View File

@ -1 +1 @@
version = '2.3.3 (mashb1t)'
version = '2.4.0-rc3 (mashb1t)'

View File

@ -65,6 +65,8 @@
"Disable seed increment": "Disable seed increment",
"Disable automatic seed increment when image number is > 1.": "Disable automatic seed increment when image number is > 1.",
"Read wildcards in order": "Read wildcards in order",
"Black Out NSFW": "Black Out NSFW",
"Use black image if NSFW is detected.": "Use black image if NSFW is detected.",
"\ud83d\udcda History Log": "\uD83D\uDCDA History Log",
"Image Style": "Image Style",
"Fooocus V2": "Fooocus V2",

0
modules/__init__.py Normal file
View File

View File

@ -46,12 +46,13 @@ def worker():
import fooocus_version
import args_manager
from modules.censor import censor_batch, censor_single
from modules.sdxl_styles import get_random_style, random_style_name, apply_style, apply_wildcards, fooocus_expansion, apply_arrays
from extras.censor import default_censor
from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name
from modules.private_logger import log
from extras.expansion import safe_str
from modules.util import remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, \
get_shape_ceil, resample_image, erode_or_dilate, get_enabled_loras
from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil,
get_shape_ceil, resample_image, erode_or_dilate, get_enabled_loras,
parse_lora_references_from_prompt, apply_wildcards)
from modules.upscaler import perform_upscale
from modules.flags import Performance
from modules.meta_parser import get_metadata_parser, MetadataScheme
@ -72,13 +73,14 @@ def worker():
print(f'[Fooocus] {text}')
async_task.yields.append(['preview', (number, text, None)])
def yield_result(async_task, imgs, black_out_nsfw, censor=True, do_not_show_finished_images=False, progressbar_index=13):
def yield_result(async_task, imgs, black_out_nsfw, censor=True, do_not_show_finished_images=False,
progressbar_index=flags.preparation_step_count):
if not isinstance(imgs, list):
imgs = [imgs]
if censor and (modules.config.default_black_out_nsfw or black_out_nsfw):
progressbar(async_task, progressbar_index, 'Checking for NSFW content ...')
imgs = censor_batch(imgs)
imgs = default_censor(imgs)
async_task.results = async_task.results + imgs
@ -156,7 +158,8 @@ def worker():
base_model_name = args.pop()
refiner_model_name = args.pop()
refiner_switch = args.pop()
loras = get_enabled_loras([[bool(args.pop()), str(args.pop()), float(args.pop())] for _ in range(modules.config.default_max_lora_number)])
loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in
range(modules.config.default_max_lora_number)])
input_image_checkbox = args.pop()
current_tab = args.pop()
uov_method = args.pop()
@ -206,7 +209,8 @@ def worker():
inpaint_erode_or_dilate = args.pop()
save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
metadata_scheme = MetadataScheme(args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
metadata_scheme = MetadataScheme(
args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
cn_tasks = {x: [] for x in flags.ip_list}
for _ in range(flags.controlnet_image_count):
@ -464,14 +468,17 @@ def worker():
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
progressbar(async_task, 3, 'Loading models ...')
progressbar(async_task, 2, 'Loading models ...')
loras = parse_lora_references_from_prompt(prompt, loras, modules.config.default_max_lora_number)
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner, vae_name=vae_name)
progressbar(async_task, 3, 'Processing prompts ...')
tasks = []
for i in range(image_number):
if disable_seed_increment:
task_seed = seed % (constants.MAX_SEED + 1)
@ -482,8 +489,10 @@ def worker():
task_prompt = apply_wildcards(prompt, task_rng, i, read_wildcards_in_order)
task_prompt = apply_arrays(task_prompt, i)
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, read_wildcards_in_order)
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in extra_negative_prompts]
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in
extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in
extra_negative_prompts]
positive_basic_workloads = []
negative_basic_workloads = []
@ -526,25 +535,25 @@ def worker():
if use_expansion:
for i, t in enumerate(tasks):
progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...')
progressbar(async_task, 4, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
for i, t in enumerate(tasks):
progressbar(async_task, 7, f'Encoding positive #{i + 1} ...')
progressbar(async_task, 5, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
for i, t in enumerate(tasks):
if abs(float(cfg_scale) - 1.0) < 1e-4:
t['uc'] = pipeline.clone_cond(t['c'])
else:
progressbar(async_task, 10, f'Encoding negative #{i + 1} ...')
progressbar(async_task, 6, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
if len(goals) > 0:
progressbar(async_task, 13, 'Image processing ...')
progressbar(async_task, 7, 'Image processing ...')
if 'vary' in goals:
if 'subtle' in uov_method:
@ -565,7 +574,7 @@ def worker():
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
progressbar(async_task, 8, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
@ -582,7 +591,7 @@ def worker():
if 'upscale' in goals:
H, W, C = uov_input_image.shape
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
progressbar(async_task, 9, f'Upscaling image from {str((H, W))} ...')
uov_input_image = perform_upscale(uov_input_image)
print(f'Image upscaled.')
@ -615,10 +624,11 @@ def worker():
direct_return = False
if direct_return:
d = [('Upscale', 'upscale', 'Fast 2x')]
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
if modules.config.default_black_out_nsfw or black_out_nsfw:
progressbar(async_task, 100, 'Checking for NSFW content ...')
uov_input_image = censor_single(uov_input_image)
uov_input_image = default_censor(uov_input_image)
progressbar(async_task, 100, 'Saving image to system ...')
uov_input_image_path = log(uov_input_image, d, output_format=output_format)
yield_result(async_task, uov_input_image_path, black_out_nsfw, False, do_not_show_finished_images=True)
return
@ -630,7 +640,7 @@ def worker():
denoising_strength = overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
progressbar(async_task, 10, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
@ -687,7 +697,7 @@ def worker():
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), black_out_nsfw, do_not_show_finished_images=True)
return
progressbar(async_task, 13, 'VAE Inpaint encoding ...')
progressbar(async_task, 11, 'VAE Inpaint encoding ...')
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
@ -707,7 +717,7 @@ def worker():
latent_swap = None
if candidate_vae_swap is not None:
progressbar(async_task, 13, 'VAE SD15 encoding ...')
progressbar(async_task, 12, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
@ -833,15 +843,17 @@ def worker():
zsnr=False)[0]
print(f'Using {scheduler_name} scheduler.')
async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])
async_task.yields.append(['preview', (flags.preparation_step_count, 'Moving model to GPU ...', None)])
def callback(step, x0, x, total_steps, y):
done_steps = current_task_id * steps + step
async_task.yields.append(['preview', (
int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
f'Sampling Image {current_task_id + 1}/{image_number}, Step {step + 1}/{total_steps} ...', y)])
int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float(done_steps) / float(all_steps)),
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{image_number} ...', y)])
for current_task_id, task in enumerate(tasks):
current_progress = int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float(current_task_id * steps) / float(all_steps))
progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{image_number} ...')
execution_start_time = time.perf_counter()
try:
@ -885,16 +897,19 @@ def worker():
img_paths = []
current_progress = int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float((current_task_id + 1) * steps) / float(all_steps))
if modules.config.default_black_out_nsfw or black_out_nsfw:
progressbar(async_task, int(15.0 + 85.0 * float((current_task_id + 1) * steps) / float(all_steps)),
'Checking for NSFW content ...')
imgs = censor_batch(imgs)
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{image_number} to system ...')
for x in imgs:
d = [('Prompt', 'prompt', task['log_positive_prompt']),
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
('Styles', 'styles', str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])),
('Styles', 'styles',
str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])),
('Performance', 'performance', performance_selection.value)]
if performance_selection.steps() != steps:
@ -917,7 +932,8 @@ def worker():
if refiner_swap_method != flags.refiner_swap_method:
d.append(('Refiner Swap Method', 'refiner_swap_method', refiner_swap_method))
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
d.append(('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
d.append(
('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
d.append(('Sampler', 'sampler', sampler_name))
d.append(('Scheduler', 'scheduler', scheduler_name))
@ -937,16 +953,13 @@ def worker():
metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
task['log_negative_prompt'], task['negative'],
steps, base_model_name, refiner_model_name, loras, vae_name)
d.append(('Metadata Scheme', 'metadata_scheme', metadata_scheme.value if save_metadata_to_images else save_metadata_to_images))
d.append(('Metadata Scheme', 'metadata_scheme',
metadata_scheme.value if save_metadata_to_images else save_metadata_to_images))
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
img_paths.append(log(x, d, metadata_parser, output_format, task))
yield_result(async_task, img_paths, black_out_nsfw, False,
do_not_show_finished_images=len(tasks) == 1
or disable_intermediate_results
or performance_selection == Performance.EXTREME_SPEED
or performance_selection == Performance.LIGHTNING)
do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results)
except ldm_patched.modules.model_management.InterruptProcessingException as e:
if async_task.last_stop == 'skip':
print('User skipped')

View File

@ -1,50 +0,0 @@
# modified version of https://github.com/AUTOMATIC1111/stable-diffusion-webui-nsfw-censor/blob/master/scripts/censor.py
import numpy as np
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
from PIL import Image
import modules.config
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = None
safety_checker = None
def numpy_to_pil(image):
image = (image * 255).round().astype("uint8")
pil_image = Image.fromarray(image)
return pil_image
# check and replace nsfw content
def check_safety(x_image):
global safety_feature_extractor, safety_checker
if safety_feature_extractor is None:
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id, cache_dir=modules.config.path_safety_checker_models)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id, cache_dir=modules.config.path_safety_checker_models)
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
return x_checked_image, has_nsfw_concept
def censor_single(x):
x_checked_image, has_nsfw_concept = check_safety(x)
# replace image with black pixels, keep dimensions
# workaround due to different numpy / pytorch image matrix format
if has_nsfw_concept[0]:
imageshape = x_checked_image.shape
x_checked_image = np.zeros((imageshape[0], imageshape[1], 3), dtype = np.uint8)
return x_checked_image
def censor_batch(images):
images = [censor_single(image) for image in images]
return images

View File

@ -8,7 +8,8 @@ import modules.flags
import modules.sdxl_styles
from modules.model_loader import load_file_from_url
from modules.util import get_files_from_folder, makedirs_with_log
from modules.util import makedirs_with_log
from modules.extra_utils import get_files_from_folder
from modules.flags import OutputFormat, Performance, MetadataScheme
@ -20,7 +21,7 @@ def get_config_path(key, default_value):
else:
return os.path.abspath(default_value)
wildcards_max_bfs_depth = 64
config_path = get_config_path('config_path', "./config.txt")
config_example_path = get_config_path('config_example_path', "config_modification_tutorial.txt")
config_dict = {}
@ -199,6 +200,7 @@ path_clip_vision = get_dir_or_set_default('path_clip_vision', '../models/clip_vi
path_fooocus_expansion = get_dir_or_set_default('path_fooocus_expansion', '../models/prompt_expansion/fooocus_expansion')
path_safety_checker_models = get_dir_or_set_default('path_safety_checker_models', '../models/safety_checker_models/')
path_wildcards = get_dir_or_set_default('path_wildcards', '../wildcards/')
path_safety_checker = get_dir_or_set_default('path_safety_checker', '../models/safety_checker/')
path_outputs = get_path_output()
def get_config_item_or_set_default(key, default_value, validator, disable_empty_as_none=False):
@ -463,6 +465,11 @@ example_inpaint_prompts = get_config_item_or_set_default(
],
validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x)
)
default_black_out_nsfw = get_config_item_or_set_default(
key='default_black_out_nsfw',
default_value=False,
validator=lambda x: isinstance(x, bool)
)
default_save_metadata_to_images = get_config_item_or_set_default(
key='default_save_metadata_to_images',
default_value=False,
@ -731,5 +738,13 @@ def downloading_upscale_model():
)
return os.path.join(path_upscale_models, 'fooocus_upscaler_s409985e5.bin')
def downloading_safety_checker_model():
load_file_from_url(
url='https://huggingface.co/mashb1t/misc/resolve/main/stable-diffusion-safety-checker.bin',
model_dir=path_safety_checker,
file_name='stable-diffusion-safety-checker.bin'
)
return os.path.join(path_safety_checker, 'stable-diffusion-safety-checker.bin')
update_files()

20
modules/extra_utils.py Normal file
View File

@ -0,0 +1,20 @@
import os
def get_files_from_folder(folder_path, extensions=None, name_filter=None):
if not os.path.isdir(folder_path):
raise ValueError("Folder path is not a valid directory.")
filenames = []
for root, _, files in os.walk(folder_path, topdown=False):
relative_path = os.path.relpath(root, folder_path)
if relative_path == ".":
relative_path = ""
for filename in sorted(files, key=lambda s: s.casefold()):
_, file_extension = os.path.splitext(filename)
if (extensions is None or file_extension.lower() in extensions) and (name_filter is None or name_filter in _):
path = os.path.join(relative_path, filename)
filenames.append(path)
return filenames

View File

@ -97,6 +97,7 @@ metadata_scheme = [
]
controlnet_image_count = 4
preparation_step_count = 13
class OutputFormat(Enum):

View File

@ -2,14 +2,12 @@ import os
import re
import json
import math
import modules.config
from modules.util import get_files_from_folder
from modules.extra_utils import get_files_from_folder
from random import Random
# cannot use modules.config - validators causing circular imports
styles_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../sdxl_styles/'))
wildcards_max_bfs_depth = 64
def normalize_key(k):
@ -25,7 +23,6 @@ def normalize_key(k):
styles = {}
styles_files = get_files_from_folder(styles_path, ['.json'])
for x in ['sdxl_styles_fooocus.json',
@ -65,34 +62,7 @@ def apply_style(style, positive):
return p.replace('{prompt}', positive).splitlines(), n.splitlines()
def apply_wildcards(wildcard_text, rng, i, read_wildcards_in_order):
for _ in range(wildcards_max_bfs_depth):
placeholders = re.findall(r'__([\w-]+)__', wildcard_text)
if len(placeholders) == 0:
return wildcard_text
print(f'[Wildcards] processing: {wildcard_text}')
for placeholder in placeholders:
try:
matches = [x for x in modules.config.wildcard_filenames if os.path.splitext(os.path.basename(x))[0] == placeholder]
words = open(os.path.join(modules.config.path_wildcards, matches[0]), encoding='utf-8').read().splitlines()
words = [x for x in words if x != '']
assert len(words) > 0
if read_wildcards_in_order:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', words[i % len(words)], 1)
else:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', rng.choice(words), 1)
except:
print(f'[Wildcards] Warning: {placeholder}.txt missing or empty. '
f'Using "{placeholder}" as a normal word.')
wildcard_text = wildcard_text.replace(f'__{placeholder}__', placeholder)
print(f'[Wildcards] {wildcard_text}')
print(f'[Wildcards] BFS stack overflow. Current text: {wildcard_text}')
return wildcard_text
def get_words(arrays, totalMult, index):
def get_words(arrays, total_mult, index):
if len(arrays) == 1:
return [arrays[0].split(',')[index]]
else:
@ -101,7 +71,7 @@ def get_words(arrays, totalMult, index):
index -= index % len(words)
index /= len(words)
index = math.floor(index)
return [word] + get_words(arrays[1:], math.floor(totalMult/len(words)), index)
return [word] + get_words(arrays[1:], math.floor(total_mult / len(words)), index)
def apply_arrays(text, index):

View File

@ -1,11 +1,12 @@
import typing
import numpy as np
import datetime
import random
import math
import os
import cv2
import re
from typing import List, Tuple, AnyStr, NamedTuple
import json
import hashlib
@ -14,8 +15,16 @@ from PIL import Image
import modules.sdxl_styles
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
# Regexp compiled once. Matches entries with the following pattern:
# <lora:some_lora:1>
# <lora:aNotherLora:-1.6>
LORAS_PROMPT_PATTERN = re.compile(r".* <lora : ([^:]+) : ([+-]? (?: (?:\d+ (?:\.\d*)?) | (?:\.\d+)))> .*", re.X)
HASH_SHA256_LENGTH = 10
def erode_or_dilate(x, k):
k = int(k)
if k > 0:
@ -163,25 +172,6 @@ def generate_temp_filename(folder='./outputs/', extension='png'):
return date_string, os.path.abspath(result), filename
def get_files_from_folder(folder_path, extensions=None, name_filter=None):
if not os.path.isdir(folder_path):
raise ValueError("Folder path is not a valid directory.")
filenames = []
for root, dirs, files in os.walk(folder_path, topdown=False):
relative_path = os.path.relpath(root, folder_path)
if relative_path == ".":
relative_path = ""
for filename in sorted(files, key=lambda s: s.casefold()):
_, file_extension = os.path.splitext(filename)
if (extensions is None or file_extension.lower() in extensions) and (name_filter is None or name_filter in _):
path = os.path.join(relative_path, filename)
filenames.append(path)
return filenames
def sha256(filename, use_addnet_hash=False, length=HASH_SHA256_LENGTH):
print(f"Calculating sha256 for {filename}: ", end='')
if use_addnet_hash:
@ -355,7 +345,7 @@ def extract_styles_from_prompt(prompt, negative_prompt):
return list(reversed(extracted)), real_prompt, negative_prompt
class PromptStyle(typing.NamedTuple):
class PromptStyle(NamedTuple):
name: str
prompt: str
negative_prompt: str
@ -382,10 +372,6 @@ def get_file_from_folder_list(name, folders):
return os.path.abspath(os.path.realpath(os.path.join(folders[0], name)))
def ordinal_suffix(number: int) -> str:
return 'th' if 10 <= number % 100 <= 20 else {1: 'st', 2: 'nd', 3: 'rd'}.get(number % 10, 'th')
def makedirs_with_log(path):
try:
os.makedirs(path, exist_ok=True)
@ -394,4 +380,47 @@ def makedirs_with_log(path):
def get_enabled_loras(loras: list) -> list:
return [[lora[1], lora[2]] for lora in loras if lora[0]]
return [(lora[1], lora[2]) for lora in loras if lora[0]]
def parse_lora_references_from_prompt(prompt: str, loras: List[Tuple[AnyStr, float]], loras_limit: int = 5) -> List[Tuple[AnyStr, float]]:
new_loras = []
updated_loras = []
for token in prompt.split(","):
m = LORAS_PROMPT_PATTERN.match(token)
if m:
new_loras.append((f"{m.group(1)}.safetensors", float(m.group(2))))
for lora in loras + new_loras:
if lora[0] != "None":
updated_loras.append(lora)
return updated_loras[:loras_limit]
def apply_wildcards(wildcard_text, rng, i, read_wildcards_in_order) -> str:
for _ in range(modules.config.wildcards_max_bfs_depth):
placeholders = re.findall(r'__([\w-]+)__', wildcard_text)
if len(placeholders) == 0:
return wildcard_text
print(f'[Wildcards] processing: {wildcard_text}')
for placeholder in placeholders:
try:
matches = [x for x in modules.config.wildcard_filenames if os.path.splitext(os.path.basename(x))[0] == placeholder]
words = open(os.path.join(modules.config.path_wildcards, matches[0]), encoding='utf-8').read().splitlines()
words = [x for x in words if x != '']
assert len(words) > 0
if read_wildcards_in_order:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', words[i % len(words)], 1)
else:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', rng.choice(words), 1)
except:
print(f'[Wildcards] Warning: {placeholder}.txt missing or empty. '
f'Using "{placeholder}" as a normal word.')
wildcard_text = wildcard_text.replace(f'__{placeholder}__', placeholder)
print(f'[Wildcards] {wildcard_text}')
print(f'[Wildcards] BFS stack overflow. Current text: {wildcard_text}')
return wildcard_text

4
tests/__init__.py Normal file
View File

@ -0,0 +1,4 @@
import sys
import pathlib
sys.path.append(pathlib.Path(f'{__file__}/../modules').parent.resolve())

48
tests/test_utils.py Normal file
View File

@ -0,0 +1,48 @@
import unittest
from modules import util
class TestUtils(unittest.TestCase):
def test_can_parse_tokens_with_lora(self):
test_cases = [
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4>, cool <lora:you-lora:0.2>", [], 5),
"output": [("hey-lora.safetensors", 0.4), ("you-lora.safetensors", 0.2)],
},
# Test can not exceed limit
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4>, cool <lora:you-lora:0.2>", [], 1),
"output": [("hey-lora.safetensors", 0.4)],
},
# test Loras from UI take precedence over prompt
{
"input": (
"some prompt, very cool, <lora:l1:0.4>, <lora:l2:-0.2>, <lora:l3:0.3>, <lora:l4:0.5>, <lora:l6:0.24>, <lora:l7:0.1>",
[("hey-lora.safetensors", 0.4)],
5,
),
"output": [
("hey-lora.safetensors", 0.4),
("l1.safetensors", 0.4),
("l2.safetensors", -0.2),
("l3.safetensors", 0.3),
("l4.safetensors", 0.5),
],
},
# Test lora specification not separated by comma are ignored, only latest specified is used
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4><lora:you-lora:0.2>", [], 3),
"output": [("you-lora.safetensors", 0.2)],
},
{
"input": ("<lora:foo:1..2>, <lora:bar:.>, <lora:baz:+> and <lora:quux:>", [], 6),
"output": []
}
]
for test in test_cases:
prompt, loras, loras_limit = test["input"]
expected = test["output"]
actual = util.parse_lora_references_from_prompt(prompt, loras, loras_limit)
self.assertEqual(expected, actual)

View File

@ -512,7 +512,8 @@ with shared.gradio_root:
info='Use black image if NSFW is detected.')
black_out_nsfw.change(lambda x: gr.update(value=x, interactive=not x),
inputs=black_out_nsfw, outputs=disable_preview, queue=False, show_progress=False)
inputs=black_out_nsfw, outputs=disable_preview, queue=False,
show_progress=False)
if not args_manager.args.disable_metadata:
save_metadata_to_images = gr.Checkbox(label='Save Metadata to Images', value=modules.config.default_save_metadata_to_images,