Fooocus GitHub Bot Commit

This commit is generated by a GitHub bot of Fooocus
This commit is contained in:
lllyasviel 2023-10-18 00:30:39 -07:00
parent e5f614c14e
commit c751758016
5 changed files with 51 additions and 20 deletions

View File

@ -98,6 +98,7 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
samples = samples.cpu()
cleanup_additional_models(models)
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
return samples
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
@ -109,5 +110,6 @@ def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent
samples = fcbh.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
samples = samples.cpu()
cleanup_additional_models(models)
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
return samples

View File

@ -61,7 +61,53 @@ class FreeU:
m.set_model_output_block_patch(output_block_patch)
return (m, )
class FreeU_V2:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, b1, b2, s1, s2):
model_channels = model.model.model_config.unet_config["model_channels"]
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
on_cpu_devices = {}
def output_block_patch(h, hsp, transformer_options):
scale = scale_dict.get(h.shape[1], None)
if scale is not None:
hidden_mean = h.mean(1).unsqueeze(1)
B = hidden_mean.shape[0]
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
if hsp.device not in on_cpu_devices:
try:
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
except:
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
on_cpu_devices[hsp.device] = True
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
else:
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
return h, hsp
m = model.clone()
m.set_model_output_block_patch(output_block_patch)
return (m, )
NODE_CLASS_MAPPINGS = {
"FreeU": FreeU,
"FreeU_V2": FreeU_V2,
}

View File

@ -1 +1 @@
version = '2.1.699'
version = '2.1.700'

View File

@ -256,7 +256,6 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sa
finally:
modules.sample_hijack.current_refiner = None
modules.sample_hijack.force_unload_all_control(positive, negative)
return out

View File

@ -3,7 +3,7 @@ import fcbh.samplers
import fcbh.model_management
from fcbh.model_base import SDXLRefiner, SDXL
from fcbh.sample import get_additional_models, get_models_from_cond
from fcbh.sample import get_additional_models, get_models_from_cond, cleanup_additional_models
from fcbh.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \
create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_adm, \
blank_inpaint_image_like
@ -49,22 +49,6 @@ def clip_separate(cond, target_model=None, target_clip=None):
return [[c, p]]
@torch.no_grad()
@torch.inference_mode()
def force_unload_all_control(positive, negative):
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
cleaned_any_model = False
for m in control_nets:
if hasattr(m, 'cleanup'):
m.cleanup()
cleaned_any_model = True
if cleaned_any_model:
fcbh.model_management.soft_empty_cache()
return
@torch.no_grad()
@torch.inference_mode()
def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
@ -129,7 +113,7 @@ def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas
extra_args["cond_concat"] = cond_concat
def refiner_switch():
force_unload_all_control(positive, negative)
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
extra_args["cond"] = positive_refiner
extra_args["uncond"] = negative_refiner