From b8a035dc15ea5189eea603154560723e18866df0 Mon Sep 17 00:00:00 2001 From: lllyasviel Date: Sun, 12 Nov 2023 03:45:29 -0800 Subject: [PATCH] use Fooocus' facexlib --- fooocus_extras/face_crop.py | 2 +- fooocus_extras/facexlib/detection/__init__.py | 31 ++ .../facexlib/detection/align_trans.py | 219 +++++++++ .../facexlib/detection/matlab_cp2tform.py | 317 +++++++++++++ .../facexlib/detection/retinaface.py | 366 +++++++++++++++ .../facexlib/detection/retinaface_net.py | 196 ++++++++ .../facexlib/detection/retinaface_utils.py | 421 ++++++++++++++++++ fooocus_extras/facexlib/parsing/__init__.py | 24 + fooocus_extras/facexlib/parsing/bisenet.py | 140 ++++++ fooocus_extras/facexlib/parsing/parsenet.py | 194 ++++++++ fooocus_extras/facexlib/parsing/resnet.py | 69 +++ fooocus_extras/facexlib/utils/__init__.py | 7 + .../facexlib/utils/face_restoration_helper.py | 374 ++++++++++++++++ fooocus_extras/facexlib/utils/face_utils.py | 250 +++++++++++ fooocus_extras/facexlib/utils/misc.py | 118 +++++ fooocus_version.py | 2 +- requirements_versions.txt | 1 - 17 files changed, 2728 insertions(+), 3 deletions(-) create mode 100644 fooocus_extras/facexlib/detection/__init__.py create mode 100644 fooocus_extras/facexlib/detection/align_trans.py create mode 100644 fooocus_extras/facexlib/detection/matlab_cp2tform.py create mode 100644 fooocus_extras/facexlib/detection/retinaface.py create mode 100644 fooocus_extras/facexlib/detection/retinaface_net.py create mode 100644 fooocus_extras/facexlib/detection/retinaface_utils.py create mode 100644 fooocus_extras/facexlib/parsing/__init__.py create mode 100644 fooocus_extras/facexlib/parsing/bisenet.py create mode 100644 fooocus_extras/facexlib/parsing/parsenet.py create mode 100644 fooocus_extras/facexlib/parsing/resnet.py create mode 100644 fooocus_extras/facexlib/utils/__init__.py create mode 100644 fooocus_extras/facexlib/utils/face_restoration_helper.py create mode 100644 fooocus_extras/facexlib/utils/face_utils.py create mode 100644 fooocus_extras/facexlib/utils/misc.py diff --git a/fooocus_extras/face_crop.py b/fooocus_extras/face_crop.py index e9d9092e..8f1e54e4 100644 --- a/fooocus_extras/face_crop.py +++ b/fooocus_extras/face_crop.py @@ -25,7 +25,7 @@ def crop_image(img_rgb): global faceRestoreHelper if faceRestoreHelper is None: - from facexlib.utils.face_restoration_helper import FaceRestoreHelper + from fooocus_extras.facexlib.utils.face_restoration_helper import FaceRestoreHelper faceRestoreHelper = FaceRestoreHelper( upscale_factor=1, model_rootpath=modules.config.path_controlnet, diff --git a/fooocus_extras/facexlib/detection/__init__.py b/fooocus_extras/facexlib/detection/__init__.py new file mode 100644 index 00000000..67fac30b --- /dev/null +++ b/fooocus_extras/facexlib/detection/__init__.py @@ -0,0 +1,31 @@ +import torch +from copy import deepcopy + +from fooocus_extras.facexlib.utils import load_file_from_url +from .retinaface import RetinaFace + + +def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None): + if model_name == 'retinaface_resnet50': + model = RetinaFace(network_name='resnet50', half=half, device=device) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth' + elif model_name == 'retinaface_mobile0.25': + model = RetinaFace(network_name='mobile0.25', half=half, device=device) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url( + url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) + + # TODO: clean pretrained model + load_net = torch.load(model_path, map_location=lambda storage, loc: storage) + # remove unnecessary 'module.' + for k, v in deepcopy(load_net).items(): + if k.startswith('module.'): + load_net[k[7:]] = v + load_net.pop(k) + model.load_state_dict(load_net, strict=True) + model.eval() + model = model.to(device) + return model diff --git a/fooocus_extras/facexlib/detection/align_trans.py b/fooocus_extras/facexlib/detection/align_trans.py new file mode 100644 index 00000000..07f1eb36 --- /dev/null +++ b/fooocus_extras/facexlib/detection/align_trans.py @@ -0,0 +1,219 @@ +import cv2 +import numpy as np + +from .matlab_cp2tform import get_similarity_transform_for_cv2 + +# reference facial points, a list of coordinates (x,y) +REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278], + [33.54930115, 92.3655014], [62.72990036, 92.20410156]] + +DEFAULT_CROP_SIZE = (96, 112) + + +class FaceWarpException(Exception): + + def __str__(self): + return 'In File {}:{}'.format(__file__, super.__str__(self)) + + +def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False): + """ + Function: + ---------- + get reference 5 key points according to crop settings: + 0. Set default crop_size: + if default_square: + crop_size = (112, 112) + else: + crop_size = (96, 112) + 1. Pad the crop_size by inner_padding_factor in each side; + 2. Resize crop_size into (output_size - outer_padding*2), + pad into output_size with outer_padding; + 3. Output reference_5point; + Parameters: + ---------- + @output_size: (w, h) or None + size of aligned face image + @inner_padding_factor: (w_factor, h_factor) + padding factor for inner (w, h) + @outer_padding: (w_pad, h_pad) + each row is a pair of coordinates (x, y) + @default_square: True or False + if True: + default crop_size = (112, 112) + else: + default crop_size = (96, 112); + !!! make sure, if output_size is not None: + (output_size - outer_padding) + = some_scale * (default crop_size * (1.0 + + inner_padding_factor)) + Returns: + ---------- + @reference_5point: 5x2 np.array + each row is a pair of transformed coordinates (x, y) + """ + + tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) + tmp_crop_size = np.array(DEFAULT_CROP_SIZE) + + # 0) make the inner region a square + if default_square: + size_diff = max(tmp_crop_size) - tmp_crop_size + tmp_5pts += size_diff / 2 + tmp_crop_size += size_diff + + if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]): + + return tmp_5pts + + if (inner_padding_factor == 0 and outer_padding == (0, 0)): + if output_size is None: + return tmp_5pts + else: + raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) + + # check output size + if not (0 <= inner_padding_factor <= 1.0): + raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') + + if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): + output_size = tmp_crop_size * \ + (1 + inner_padding_factor * 2).astype(np.int32) + output_size += np.array(outer_padding) + if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): + raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') + + # 1) pad the inner region according inner_padding_factor + if inner_padding_factor > 0: + size_diff = tmp_crop_size * inner_padding_factor * 2 + tmp_5pts += size_diff / 2 + tmp_crop_size += np.round(size_diff).astype(np.int32) + + # 2) resize the padded inner region + size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 + + if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: + raise FaceWarpException('Must have (output_size - outer_padding)' + '= some_scale * (crop_size * (1.0 + inner_padding_factor)') + + scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] + tmp_5pts = tmp_5pts * scale_factor + # size_diff = tmp_crop_size * (scale_factor - min(scale_factor)) + # tmp_5pts = tmp_5pts + size_diff / 2 + tmp_crop_size = size_bf_outer_pad + + # 3) add outer_padding to make output_size + reference_5point = tmp_5pts + np.array(outer_padding) + tmp_crop_size = output_size + + return reference_5point + + +def get_affine_transform_matrix(src_pts, dst_pts): + """ + Function: + ---------- + get affine transform matrix 'tfm' from src_pts to dst_pts + Parameters: + ---------- + @src_pts: Kx2 np.array + source points matrix, each row is a pair of coordinates (x, y) + @dst_pts: Kx2 np.array + destination points matrix, each row is a pair of coordinates (x, y) + Returns: + ---------- + @tfm: 2x3 np.array + transform matrix from src_pts to dst_pts + """ + + tfm = np.float32([[1, 0, 0], [0, 1, 0]]) + n_pts = src_pts.shape[0] + ones = np.ones((n_pts, 1), src_pts.dtype) + src_pts_ = np.hstack([src_pts, ones]) + dst_pts_ = np.hstack([dst_pts, ones]) + + A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) + + if rank == 3: + tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]]) + elif rank == 2: + tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]]) + + return tfm + + +def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'): + """ + Function: + ---------- + apply affine transform 'trans' to uv + Parameters: + ---------- + @src_img: 3x3 np.array + input image + @facial_pts: could be + 1)a list of K coordinates (x,y) + or + 2) Kx2 or 2xK np.array + each row or col is a pair of coordinates (x, y) + @reference_pts: could be + 1) a list of K coordinates (x,y) + or + 2) Kx2 or 2xK np.array + each row or col is a pair of coordinates (x, y) + or + 3) None + if None, use default reference facial points + @crop_size: (w, h) + output face image size + @align_type: transform type, could be one of + 1) 'similarity': use similarity transform + 2) 'cv2_affine': use the first 3 points to do affine transform, + by calling cv2.getAffineTransform() + 3) 'affine': use all points to do affine transform + Returns: + ---------- + @face_img: output face image with size (w, h) = @crop_size + """ + + if reference_pts is None: + if crop_size[0] == 96 and crop_size[1] == 112: + reference_pts = REFERENCE_FACIAL_POINTS + else: + default_square = False + inner_padding_factor = 0 + outer_padding = (0, 0) + output_size = crop_size + + reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding, + default_square) + + ref_pts = np.float32(reference_pts) + ref_pts_shp = ref_pts.shape + if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: + raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2') + + if ref_pts_shp[0] == 2: + ref_pts = ref_pts.T + + src_pts = np.float32(facial_pts) + src_pts_shp = src_pts.shape + if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: + raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2') + + if src_pts_shp[0] == 2: + src_pts = src_pts.T + + if src_pts.shape != ref_pts.shape: + raise FaceWarpException('facial_pts and reference_pts must have the same shape') + + if align_type == 'cv2_affine': + tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) + elif align_type == 'affine': + tfm = get_affine_transform_matrix(src_pts, ref_pts) + else: + tfm = get_similarity_transform_for_cv2(src_pts, ref_pts) + + face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1])) + + return face_img diff --git a/fooocus_extras/facexlib/detection/matlab_cp2tform.py b/fooocus_extras/facexlib/detection/matlab_cp2tform.py new file mode 100644 index 00000000..b2a8b54a --- /dev/null +++ b/fooocus_extras/facexlib/detection/matlab_cp2tform.py @@ -0,0 +1,317 @@ +import numpy as np +from numpy.linalg import inv, lstsq +from numpy.linalg import matrix_rank as rank +from numpy.linalg import norm + + +class MatlabCp2tormException(Exception): + + def __str__(self): + return 'In File {}:{}'.format(__file__, super.__str__(self)) + + +def tformfwd(trans, uv): + """ + Function: + ---------- + apply affine transform 'trans' to uv + + Parameters: + ---------- + @trans: 3x3 np.array + transform matrix + @uv: Kx2 np.array + each row is a pair of coordinates (x, y) + + Returns: + ---------- + @xy: Kx2 np.array + each row is a pair of transformed coordinates (x, y) + """ + uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) + xy = np.dot(uv, trans) + xy = xy[:, 0:-1] + return xy + + +def tforminv(trans, uv): + """ + Function: + ---------- + apply the inverse of affine transform 'trans' to uv + + Parameters: + ---------- + @trans: 3x3 np.array + transform matrix + @uv: Kx2 np.array + each row is a pair of coordinates (x, y) + + Returns: + ---------- + @xy: Kx2 np.array + each row is a pair of inverse-transformed coordinates (x, y) + """ + Tinv = inv(trans) + xy = tformfwd(Tinv, uv) + return xy + + +def findNonreflectiveSimilarity(uv, xy, options=None): + options = {'K': 2} + + K = options['K'] + M = xy.shape[0] + x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector + y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector + + tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) + tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) + X = np.vstack((tmp1, tmp2)) + + u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector + v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector + U = np.vstack((u, v)) + + # We know that X * r = U + if rank(X) >= 2 * K: + r, _, _, _ = lstsq(X, U, rcond=-1) + r = np.squeeze(r) + else: + raise Exception('cp2tform:twoUniquePointsReq') + sc = r[0] + ss = r[1] + tx = r[2] + ty = r[3] + + Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) + T = inv(Tinv) + T[:, 2] = np.array([0, 0, 1]) + + return T, Tinv + + +def findSimilarity(uv, xy, options=None): + options = {'K': 2} + + # uv = np.array(uv) + # xy = np.array(xy) + + # Solve for trans1 + trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) + + # Solve for trans2 + + # manually reflect the xy data across the Y-axis + xyR = xy + xyR[:, 0] = -1 * xyR[:, 0] + + trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) + + # manually reflect the tform to undo the reflection done on xyR + TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) + + trans2 = np.dot(trans2r, TreflectY) + + # Figure out if trans1 or trans2 is better + xy1 = tformfwd(trans1, uv) + norm1 = norm(xy1 - xy) + + xy2 = tformfwd(trans2, uv) + norm2 = norm(xy2 - xy) + + if norm1 <= norm2: + return trans1, trans1_inv + else: + trans2_inv = inv(trans2) + return trans2, trans2_inv + + +def get_similarity_transform(src_pts, dst_pts, reflective=True): + """ + Function: + ---------- + Find Similarity Transform Matrix 'trans': + u = src_pts[:, 0] + v = src_pts[:, 1] + x = dst_pts[:, 0] + y = dst_pts[:, 1] + [x, y, 1] = [u, v, 1] * trans + + Parameters: + ---------- + @src_pts: Kx2 np.array + source points, each row is a pair of coordinates (x, y) + @dst_pts: Kx2 np.array + destination points, each row is a pair of transformed + coordinates (x, y) + @reflective: True or False + if True: + use reflective similarity transform + else: + use non-reflective similarity transform + + Returns: + ---------- + @trans: 3x3 np.array + transform matrix from uv to xy + trans_inv: 3x3 np.array + inverse of trans, transform matrix from xy to uv + """ + + if reflective: + trans, trans_inv = findSimilarity(src_pts, dst_pts) + else: + trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) + + return trans, trans_inv + + +def cvt_tform_mat_for_cv2(trans): + """ + Function: + ---------- + Convert Transform Matrix 'trans' into 'cv2_trans' which could be + directly used by cv2.warpAffine(): + u = src_pts[:, 0] + v = src_pts[:, 1] + x = dst_pts[:, 0] + y = dst_pts[:, 1] + [x, y].T = cv_trans * [u, v, 1].T + + Parameters: + ---------- + @trans: 3x3 np.array + transform matrix from uv to xy + + Returns: + ---------- + @cv2_trans: 2x3 np.array + transform matrix from src_pts to dst_pts, could be directly used + for cv2.warpAffine() + """ + cv2_trans = trans[:, 0:2].T + + return cv2_trans + + +def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): + """ + Function: + ---------- + Find Similarity Transform Matrix 'cv2_trans' which could be + directly used by cv2.warpAffine(): + u = src_pts[:, 0] + v = src_pts[:, 1] + x = dst_pts[:, 0] + y = dst_pts[:, 1] + [x, y].T = cv_trans * [u, v, 1].T + + Parameters: + ---------- + @src_pts: Kx2 np.array + source points, each row is a pair of coordinates (x, y) + @dst_pts: Kx2 np.array + destination points, each row is a pair of transformed + coordinates (x, y) + reflective: True or False + if True: + use reflective similarity transform + else: + use non-reflective similarity transform + + Returns: + ---------- + @cv2_trans: 2x3 np.array + transform matrix from src_pts to dst_pts, could be directly used + for cv2.warpAffine() + """ + trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) + cv2_trans = cvt_tform_mat_for_cv2(trans) + + return cv2_trans + + +if __name__ == '__main__': + """ + u = [0, 6, -2] + v = [0, 3, 5] + x = [-1, 0, 4] + y = [-1, -10, 4] + + # In Matlab, run: + # + # uv = [u'; v']; + # xy = [x'; y']; + # tform_sim=cp2tform(uv,xy,'similarity'); + # + # trans = tform_sim.tdata.T + # ans = + # -0.0764 -1.6190 0 + # 1.6190 -0.0764 0 + # -3.2156 0.0290 1.0000 + # trans_inv = tform_sim.tdata.Tinv + # ans = + # + # -0.0291 0.6163 0 + # -0.6163 -0.0291 0 + # -0.0756 1.9826 1.0000 + # xy_m=tformfwd(tform_sim, u,v) + # + # xy_m = + # + # -3.2156 0.0290 + # 1.1833 -9.9143 + # 5.0323 2.8853 + # uv_m=tforminv(tform_sim, x,y) + # + # uv_m = + # + # 0.5698 1.3953 + # 6.0872 2.2733 + # -2.6570 4.3314 + """ + u = [0, 6, -2] + v = [0, 3, 5] + x = [-1, 0, 4] + y = [-1, -10, 4] + + uv = np.array((u, v)).T + xy = np.array((x, y)).T + + print('\n--->uv:') + print(uv) + print('\n--->xy:') + print(xy) + + trans, trans_inv = get_similarity_transform(uv, xy) + + print('\n--->trans matrix:') + print(trans) + + print('\n--->trans_inv matrix:') + print(trans_inv) + + print('\n---> apply transform to uv') + print('\nxy_m = uv_augmented * trans') + uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1)))) + xy_m = np.dot(uv_aug, trans) + print(xy_m) + + print('\nxy_m = tformfwd(trans, uv)') + xy_m = tformfwd(trans, uv) + print(xy_m) + + print('\n---> apply inverse transform to xy') + print('\nuv_m = xy_augmented * trans_inv') + xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1)))) + uv_m = np.dot(xy_aug, trans_inv) + print(uv_m) + + print('\nuv_m = tformfwd(trans_inv, xy)') + uv_m = tformfwd(trans_inv, xy) + print(uv_m) + + uv_m = tforminv(trans, xy) + print('\nuv_m = tforminv(trans, xy)') + print(uv_m) diff --git a/fooocus_extras/facexlib/detection/retinaface.py b/fooocus_extras/facexlib/detection/retinaface.py new file mode 100644 index 00000000..26f220a8 --- /dev/null +++ b/fooocus_extras/facexlib/detection/retinaface.py @@ -0,0 +1,366 @@ +import cv2 +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from PIL import Image +from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter + +from fooocus_extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face +from fooocus_extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head +from fooocus_extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm, + py_cpu_nms) + + +def generate_config(network_name): + + cfg_mnet = { + 'name': 'mobilenet0.25', + 'min_sizes': [[16, 32], [64, 128], [256, 512]], + 'steps': [8, 16, 32], + 'variance': [0.1, 0.2], + 'clip': False, + 'loc_weight': 2.0, + 'gpu_train': True, + 'batch_size': 32, + 'ngpu': 1, + 'epoch': 250, + 'decay1': 190, + 'decay2': 220, + 'image_size': 640, + 'return_layers': { + 'stage1': 1, + 'stage2': 2, + 'stage3': 3 + }, + 'in_channel': 32, + 'out_channel': 64 + } + + cfg_re50 = { + 'name': 'Resnet50', + 'min_sizes': [[16, 32], [64, 128], [256, 512]], + 'steps': [8, 16, 32], + 'variance': [0.1, 0.2], + 'clip': False, + 'loc_weight': 2.0, + 'gpu_train': True, + 'batch_size': 24, + 'ngpu': 4, + 'epoch': 100, + 'decay1': 70, + 'decay2': 90, + 'image_size': 840, + 'return_layers': { + 'layer2': 1, + 'layer3': 2, + 'layer4': 3 + }, + 'in_channel': 256, + 'out_channel': 256 + } + + if network_name == 'mobile0.25': + return cfg_mnet + elif network_name == 'resnet50': + return cfg_re50 + else: + raise NotImplementedError(f'network_name={network_name}') + + +class RetinaFace(nn.Module): + + def __init__(self, network_name='resnet50', half=False, phase='test', device=None): + self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device + + super(RetinaFace, self).__init__() + self.half_inference = half + cfg = generate_config(network_name) + self.backbone = cfg['name'] + + self.model_name = f'retinaface_{network_name}' + self.cfg = cfg + self.phase = phase + self.target_size, self.max_size = 1600, 2150 + self.resize, self.scale, self.scale1 = 1., None, None + self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device) + self.reference = get_reference_facial_points(default_square=True) + # Build network. + backbone = None + if cfg['name'] == 'mobilenet0.25': + backbone = MobileNetV1() + self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) + elif cfg['name'] == 'Resnet50': + import torchvision.models as models + backbone = models.resnet50(weights=None) + self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) + + in_channels_stage2 = cfg['in_channel'] + in_channels_list = [ + in_channels_stage2 * 2, + in_channels_stage2 * 4, + in_channels_stage2 * 8, + ] + + out_channels = cfg['out_channel'] + self.fpn = FPN(in_channels_list, out_channels) + self.ssh1 = SSH(out_channels, out_channels) + self.ssh2 = SSH(out_channels, out_channels) + self.ssh3 = SSH(out_channels, out_channels) + + self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel']) + self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel']) + self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel']) + + self.to(self.device) + self.eval() + if self.half_inference: + self.half() + + def forward(self, inputs): + out = self.body(inputs) + + if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50': + out = list(out.values()) + # FPN + fpn = self.fpn(out) + + # SSH + feature1 = self.ssh1(fpn[0]) + feature2 = self.ssh2(fpn[1]) + feature3 = self.ssh3(fpn[2]) + features = [feature1, feature2, feature3] + + bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1) + classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1) + tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)] + ldm_regressions = (torch.cat(tmp, dim=1)) + + if self.phase == 'train': + output = (bbox_regressions, classifications, ldm_regressions) + else: + output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions) + return output + + def __detect_faces(self, inputs): + # get scale + height, width = inputs.shape[2:] + self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device) + tmp = [width, height, width, height, width, height, width, height, width, height] + self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device) + + # forawrd + inputs = inputs.to(self.device) + if self.half_inference: + inputs = inputs.half() + loc, conf, landmarks = self(inputs) + + # get priorbox + priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:]) + priors = priorbox.forward().to(self.device) + + return loc, conf, landmarks, priors + + # single image detection + def transform(self, image, use_origin_size): + # convert to opencv format + if isinstance(image, Image.Image): + image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) + image = image.astype(np.float32) + + # testing scale + im_size_min = np.min(image.shape[0:2]) + im_size_max = np.max(image.shape[0:2]) + resize = float(self.target_size) / float(im_size_min) + + # prevent bigger axis from being more than max_size + if np.round(resize * im_size_max) > self.max_size: + resize = float(self.max_size) / float(im_size_max) + resize = 1 if use_origin_size else resize + + # resize + if resize != 1: + image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) + + # convert to torch.tensor format + # image -= (104, 117, 123) + image = image.transpose(2, 0, 1) + image = torch.from_numpy(image).unsqueeze(0) + + return image, resize + + def detect_faces( + self, + image, + conf_threshold=0.8, + nms_threshold=0.4, + use_origin_size=True, + ): + image, self.resize = self.transform(image, use_origin_size) + image = image.to(self.device) + if self.half_inference: + image = image.half() + image = image - self.mean_tensor + + loc, conf, landmarks, priors = self.__detect_faces(image) + + boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance']) + boxes = boxes * self.scale / self.resize + boxes = boxes.cpu().numpy() + + scores = conf.squeeze(0).data.cpu().numpy()[:, 1] + + landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance']) + landmarks = landmarks * self.scale1 / self.resize + landmarks = landmarks.cpu().numpy() + + # ignore low scores + inds = np.where(scores > conf_threshold)[0] + boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds] + + # sort + order = scores.argsort()[::-1] + boxes, landmarks, scores = boxes[order], landmarks[order], scores[order] + + # do NMS + bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) + keep = py_cpu_nms(bounding_boxes, nms_threshold) + bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep] + # self.t['forward_pass'].toc() + # print(self.t['forward_pass'].average_time) + # import sys + # sys.stdout.flush() + return np.concatenate((bounding_boxes, landmarks), axis=1) + + def __align_multi(self, image, boxes, landmarks, limit=None): + + if len(boxes) < 1: + return [], [] + + if limit: + boxes = boxes[:limit] + landmarks = landmarks[:limit] + + faces = [] + for landmark in landmarks: + facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)] + + warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112)) + faces.append(warped_face) + + return np.concatenate((boxes, landmarks), axis=1), faces + + def align_multi(self, img, conf_threshold=0.8, limit=None): + + rlt = self.detect_faces(img, conf_threshold=conf_threshold) + boxes, landmarks = rlt[:, 0:5], rlt[:, 5:] + + return self.__align_multi(img, boxes, landmarks, limit) + + # batched detection + def batched_transform(self, frames, use_origin_size): + """ + Arguments: + frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c], + type=np.float32, BGR format). + use_origin_size: whether to use origin size. + """ + from_PIL = True if isinstance(frames[0], Image.Image) else False + + # convert to opencv format + if from_PIL: + frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames] + frames = np.asarray(frames, dtype=np.float32) + + # testing scale + im_size_min = np.min(frames[0].shape[0:2]) + im_size_max = np.max(frames[0].shape[0:2]) + resize = float(self.target_size) / float(im_size_min) + + # prevent bigger axis from being more than max_size + if np.round(resize * im_size_max) > self.max_size: + resize = float(self.max_size) / float(im_size_max) + resize = 1 if use_origin_size else resize + + # resize + if resize != 1: + if not from_PIL: + frames = F.interpolate(frames, scale_factor=resize) + else: + frames = [ + cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) + for frame in frames + ] + + # convert to torch.tensor format + if not from_PIL: + frames = frames.transpose(1, 2).transpose(1, 3).contiguous() + else: + frames = frames.transpose((0, 3, 1, 2)) + frames = torch.from_numpy(frames) + + return frames, resize + + def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True): + """ + Arguments: + frames: a list of PIL.Image, or np.array(shape=[n, h, w, c], + type=np.uint8, BGR format). + conf_threshold: confidence threshold. + nms_threshold: nms threshold. + use_origin_size: whether to use origin size. + Returns: + final_bounding_boxes: list of np.array ([n_boxes, 5], + type=np.float32). + final_landmarks: list of np.array ([n_boxes, 10], type=np.float32). + """ + # self.t['forward_pass'].tic() + frames, self.resize = self.batched_transform(frames, use_origin_size) + frames = frames.to(self.device) + frames = frames - self.mean_tensor + + b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames) + + final_bounding_boxes, final_landmarks = [], [] + + # decode + priors = priors.unsqueeze(0) + b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize + b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize + b_conf = b_conf[:, :, 1] + + # index for selection + b_indice = b_conf > conf_threshold + + # concat + b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float() + + for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice): + + # ignore low scores + pred, landm = pred[inds, :], landm[inds, :] + if pred.shape[0] == 0: + final_bounding_boxes.append(np.array([], dtype=np.float32)) + final_landmarks.append(np.array([], dtype=np.float32)) + continue + + # sort + # order = score.argsort(descending=True) + # box, landm, score = box[order], landm[order], score[order] + + # to CPU + bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy() + + # NMS + keep = py_cpu_nms(bounding_boxes, nms_threshold) + bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep] + + # append + final_bounding_boxes.append(bounding_boxes) + final_landmarks.append(landmarks) + # self.t['forward_pass'].toc(average=True) + # self.batch_time += self.t['forward_pass'].diff + # self.total_frame += len(frames) + # print(self.batch_time / self.total_frame) + + return final_bounding_boxes, final_landmarks diff --git a/fooocus_extras/facexlib/detection/retinaface_net.py b/fooocus_extras/facexlib/detection/retinaface_net.py new file mode 100644 index 00000000..ab6aa82d --- /dev/null +++ b/fooocus_extras/facexlib/detection/retinaface_net.py @@ -0,0 +1,196 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def conv_bn(inp, oup, stride=1, leaky=0): + return nn.Sequential( + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), + nn.LeakyReLU(negative_slope=leaky, inplace=True)) + + +def conv_bn_no_relu(inp, oup, stride): + return nn.Sequential( + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), + nn.BatchNorm2d(oup), + ) + + +def conv_bn1X1(inp, oup, stride, leaky=0): + return nn.Sequential( + nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup), + nn.LeakyReLU(negative_slope=leaky, inplace=True)) + + +def conv_dw(inp, oup, stride, leaky=0.1): + return nn.Sequential( + nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), + nn.BatchNorm2d(inp), + nn.LeakyReLU(negative_slope=leaky, inplace=True), + nn.Conv2d(inp, oup, 1, 1, 0, bias=False), + nn.BatchNorm2d(oup), + nn.LeakyReLU(negative_slope=leaky, inplace=True), + ) + + +class SSH(nn.Module): + + def __init__(self, in_channel, out_channel): + super(SSH, self).__init__() + assert out_channel % 4 == 0 + leaky = 0 + if (out_channel <= 64): + leaky = 0.1 + self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1) + + self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky) + self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) + + self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky) + self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) + + def forward(self, input): + conv3X3 = self.conv3X3(input) + + conv5X5_1 = self.conv5X5_1(input) + conv5X5 = self.conv5X5_2(conv5X5_1) + + conv7X7_2 = self.conv7X7_2(conv5X5_1) + conv7X7 = self.conv7x7_3(conv7X7_2) + + out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) + out = F.relu(out) + return out + + +class FPN(nn.Module): + + def __init__(self, in_channels_list, out_channels): + super(FPN, self).__init__() + leaky = 0 + if (out_channels <= 64): + leaky = 0.1 + self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky) + self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky) + self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky) + + self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky) + self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky) + + def forward(self, input): + # names = list(input.keys()) + # input = list(input.values()) + + output1 = self.output1(input[0]) + output2 = self.output2(input[1]) + output3 = self.output3(input[2]) + + up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest') + output2 = output2 + up3 + output2 = self.merge2(output2) + + up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest') + output1 = output1 + up2 + output1 = self.merge1(output1) + + out = [output1, output2, output3] + return out + + +class MobileNetV1(nn.Module): + + def __init__(self): + super(MobileNetV1, self).__init__() + self.stage1 = nn.Sequential( + conv_bn(3, 8, 2, leaky=0.1), # 3 + conv_dw(8, 16, 1), # 7 + conv_dw(16, 32, 2), # 11 + conv_dw(32, 32, 1), # 19 + conv_dw(32, 64, 2), # 27 + conv_dw(64, 64, 1), # 43 + ) + self.stage2 = nn.Sequential( + conv_dw(64, 128, 2), # 43 + 16 = 59 + conv_dw(128, 128, 1), # 59 + 32 = 91 + conv_dw(128, 128, 1), # 91 + 32 = 123 + conv_dw(128, 128, 1), # 123 + 32 = 155 + conv_dw(128, 128, 1), # 155 + 32 = 187 + conv_dw(128, 128, 1), # 187 + 32 = 219 + ) + self.stage3 = nn.Sequential( + conv_dw(128, 256, 2), # 219 +3 2 = 241 + conv_dw(256, 256, 1), # 241 + 64 = 301 + ) + self.avg = nn.AdaptiveAvgPool2d((1, 1)) + self.fc = nn.Linear(256, 1000) + + def forward(self, x): + x = self.stage1(x) + x = self.stage2(x) + x = self.stage3(x) + x = self.avg(x) + # x = self.model(x) + x = x.view(-1, 256) + x = self.fc(x) + return x + + +class ClassHead(nn.Module): + + def __init__(self, inchannels=512, num_anchors=3): + super(ClassHead, self).__init__() + self.num_anchors = num_anchors + self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) + + def forward(self, x): + out = self.conv1x1(x) + out = out.permute(0, 2, 3, 1).contiguous() + + return out.view(out.shape[0], -1, 2) + + +class BboxHead(nn.Module): + + def __init__(self, inchannels=512, num_anchors=3): + super(BboxHead, self).__init__() + self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0) + + def forward(self, x): + out = self.conv1x1(x) + out = out.permute(0, 2, 3, 1).contiguous() + + return out.view(out.shape[0], -1, 4) + + +class LandmarkHead(nn.Module): + + def __init__(self, inchannels=512, num_anchors=3): + super(LandmarkHead, self).__init__() + self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0) + + def forward(self, x): + out = self.conv1x1(x) + out = out.permute(0, 2, 3, 1).contiguous() + + return out.view(out.shape[0], -1, 10) + + +def make_class_head(fpn_num=3, inchannels=64, anchor_num=2): + classhead = nn.ModuleList() + for i in range(fpn_num): + classhead.append(ClassHead(inchannels, anchor_num)) + return classhead + + +def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2): + bboxhead = nn.ModuleList() + for i in range(fpn_num): + bboxhead.append(BboxHead(inchannels, anchor_num)) + return bboxhead + + +def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2): + landmarkhead = nn.ModuleList() + for i in range(fpn_num): + landmarkhead.append(LandmarkHead(inchannels, anchor_num)) + return landmarkhead diff --git a/fooocus_extras/facexlib/detection/retinaface_utils.py b/fooocus_extras/facexlib/detection/retinaface_utils.py new file mode 100644 index 00000000..8c357757 --- /dev/null +++ b/fooocus_extras/facexlib/detection/retinaface_utils.py @@ -0,0 +1,421 @@ +import numpy as np +import torch +import torchvision +from itertools import product as product +from math import ceil + + +class PriorBox(object): + + def __init__(self, cfg, image_size=None, phase='train'): + super(PriorBox, self).__init__() + self.min_sizes = cfg['min_sizes'] + self.steps = cfg['steps'] + self.clip = cfg['clip'] + self.image_size = image_size + self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps] + self.name = 's' + + def forward(self): + anchors = [] + for k, f in enumerate(self.feature_maps): + min_sizes = self.min_sizes[k] + for i, j in product(range(f[0]), range(f[1])): + for min_size in min_sizes: + s_kx = min_size / self.image_size[1] + s_ky = min_size / self.image_size[0] + dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]] + dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]] + for cy, cx in product(dense_cy, dense_cx): + anchors += [cx, cy, s_kx, s_ky] + + # back to torch land + output = torch.Tensor(anchors).view(-1, 4) + if self.clip: + output.clamp_(max=1, min=0) + return output + + +def py_cpu_nms(dets, thresh): + """Pure Python NMS baseline.""" + keep = torchvision.ops.nms( + boxes=torch.Tensor(dets[:, :4]), + scores=torch.Tensor(dets[:, 4]), + iou_threshold=thresh, + ) + + return list(keep) + + +def point_form(boxes): + """ Convert prior_boxes to (xmin, ymin, xmax, ymax) + representation for comparison to point form ground truth data. + Args: + boxes: (tensor) center-size default boxes from priorbox layers. + Return: + boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. + """ + return torch.cat( + ( + boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin + boxes[:, :2] + boxes[:, 2:] / 2), + 1) # xmax, ymax + + +def center_size(boxes): + """ Convert prior_boxes to (cx, cy, w, h) + representation for comparison to center-size form ground truth data. + Args: + boxes: (tensor) point_form boxes + Return: + boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. + """ + return torch.cat( + (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy + boxes[:, 2:] - boxes[:, :2], + 1) # w, h + + +def intersect(box_a, box_b): + """ We resize both tensors to [A,B,2] without new malloc: + [A,2] -> [A,1,2] -> [A,B,2] + [B,2] -> [1,B,2] -> [A,B,2] + Then we compute the area of intersect between box_a and box_b. + Args: + box_a: (tensor) bounding boxes, Shape: [A,4]. + box_b: (tensor) bounding boxes, Shape: [B,4]. + Return: + (tensor) intersection area, Shape: [A,B]. + """ + A = box_a.size(0) + B = box_b.size(0) + max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) + min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) + inter = torch.clamp((max_xy - min_xy), min=0) + return inter[:, :, 0] * inter[:, :, 1] + + +def jaccard(box_a, box_b): + """Compute the jaccard overlap of two sets of boxes. The jaccard overlap + is simply the intersection over union of two boxes. Here we operate on + ground truth boxes and default boxes. + E.g.: + A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) + Args: + box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] + box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] + Return: + jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] + """ + inter = intersect(box_a, box_b) + area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] + area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] + union = area_a + area_b - inter + return inter / union # [A,B] + + +def matrix_iou(a, b): + """ + return iou of a and b, numpy version for data augenmentation + """ + lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) + rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) + + area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) + area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) + area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) + return area_i / (area_a[:, np.newaxis] + area_b - area_i) + + +def matrix_iof(a, b): + """ + return iof of a and b, numpy version for data augenmentation + """ + lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) + rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) + + area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) + area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) + return area_i / np.maximum(area_a[:, np.newaxis], 1) + + +def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx): + """Match each prior box with the ground truth box of the highest jaccard + overlap, encode the bounding boxes, then return the matched indices + corresponding to both confidence and location preds. + Args: + threshold: (float) The overlap threshold used when matching boxes. + truths: (tensor) Ground truth boxes, Shape: [num_obj, 4]. + priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4]. + variances: (tensor) Variances corresponding to each prior coord, + Shape: [num_priors, 4]. + labels: (tensor) All the class labels for the image, Shape: [num_obj]. + landms: (tensor) Ground truth landms, Shape [num_obj, 10]. + loc_t: (tensor) Tensor to be filled w/ encoded location targets. + conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds. + landm_t: (tensor) Tensor to be filled w/ encoded landm targets. + idx: (int) current batch index + Return: + The matched indices corresponding to 1)location 2)confidence + 3)landm preds. + """ + # jaccard index + overlaps = jaccard(truths, point_form(priors)) + # (Bipartite Matching) + # [1,num_objects] best prior for each ground truth + best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True) + + # ignore hard gt + valid_gt_idx = best_prior_overlap[:, 0] >= 0.2 + best_prior_idx_filter = best_prior_idx[valid_gt_idx, :] + if best_prior_idx_filter.shape[0] <= 0: + loc_t[idx] = 0 + conf_t[idx] = 0 + return + + # [1,num_priors] best ground truth for each prior + best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True) + best_truth_idx.squeeze_(0) + best_truth_overlap.squeeze_(0) + best_prior_idx.squeeze_(1) + best_prior_idx_filter.squeeze_(1) + best_prior_overlap.squeeze_(1) + best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior + # TODO refactor: index best_prior_idx with long tensor + # ensure every gt matches with its prior of max overlap + for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes + best_truth_idx[best_prior_idx[j]] = j + matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来 + conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来 + conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本 + loc = encode(matches, priors, variances) + + matches_landm = landms[best_truth_idx] + landm = encode_landm(matches_landm, priors, variances) + loc_t[idx] = loc # [num_priors,4] encoded offsets to learn + conf_t[idx] = conf # [num_priors] top class label for each prior + landm_t[idx] = landm + + +def encode(matched, priors, variances): + """Encode the variances from the priorbox layers into the ground truth boxes + we have matched (based on jaccard overlap) with the prior boxes. + Args: + matched: (tensor) Coords of ground truth for each prior in point-form + Shape: [num_priors, 4]. + priors: (tensor) Prior boxes in center-offset form + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + encoded boxes (tensor), Shape: [num_priors, 4] + """ + + # dist b/t match center and prior's center + g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] + # encode variance + g_cxcy /= (variances[0] * priors[:, 2:]) + # match wh / prior wh + g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] + g_wh = torch.log(g_wh) / variances[1] + # return target for smooth_l1_loss + return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] + + +def encode_landm(matched, priors, variances): + """Encode the variances from the priorbox layers into the ground truth boxes + we have matched (based on jaccard overlap) with the prior boxes. + Args: + matched: (tensor) Coords of ground truth for each prior in point-form + Shape: [num_priors, 10]. + priors: (tensor) Prior boxes in center-offset form + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + encoded landm (tensor), Shape: [num_priors, 10] + """ + + # dist b/t match center and prior's center + matched = torch.reshape(matched, (matched.size(0), 5, 2)) + priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2) + g_cxcy = matched[:, :, :2] - priors[:, :, :2] + # encode variance + g_cxcy /= (variances[0] * priors[:, :, 2:]) + # g_cxcy /= priors[:, :, 2:] + g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1) + # return target for smooth_l1_loss + return g_cxcy + + +# Adapted from https://github.com/Hakuyume/chainer-ssd +def decode(loc, priors, variances): + """Decode locations from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + loc (tensor): location predictions for loc layers, + Shape: [num_priors,4] + priors (tensor): Prior boxes in center-offset form. + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded bounding box predictions + """ + + boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], + priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) + boxes[:, :2] -= boxes[:, 2:] / 2 + boxes[:, 2:] += boxes[:, :2] + return boxes + + +def decode_landm(pre, priors, variances): + """Decode landm from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + pre (tensor): landm predictions for loc layers, + Shape: [num_priors,10] + priors (tensor): Prior boxes in center-offset form. + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded landm predictions + """ + tmp = ( + priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:], + ) + landms = torch.cat(tmp, dim=1) + return landms + + +def batched_decode(b_loc, priors, variances): + """Decode locations from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + b_loc (tensor): location predictions for loc layers, + Shape: [num_batches,num_priors,4] + priors (tensor): Prior boxes in center-offset form. + Shape: [1,num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded bounding box predictions + """ + boxes = ( + priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:], + priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]), + ) + boxes = torch.cat(boxes, dim=2) + + boxes[:, :, :2] -= boxes[:, :, 2:] / 2 + boxes[:, :, 2:] += boxes[:, :, :2] + return boxes + + +def batched_decode_landm(pre, priors, variances): + """Decode landm from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + pre (tensor): landm predictions for loc layers, + Shape: [num_batches,num_priors,10] + priors (tensor): Prior boxes in center-offset form. + Shape: [1,num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded landm predictions + """ + landms = ( + priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:], + ) + landms = torch.cat(landms, dim=2) + return landms + + +def log_sum_exp(x): + """Utility function for computing log_sum_exp while determining + This will be used to determine unaveraged confidence loss across + all examples in a batch. + Args: + x (Variable(tensor)): conf_preds from conf layers + """ + x_max = x.data.max() + return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max + + +# Original author: Francisco Massa: +# https://github.com/fmassa/object-detection.torch +# Ported to PyTorch by Max deGroot (02/01/2017) +def nms(boxes, scores, overlap=0.5, top_k=200): + """Apply non-maximum suppression at test time to avoid detecting too many + overlapping bounding boxes for a given object. + Args: + boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. + scores: (tensor) The class predscores for the img, Shape:[num_priors]. + overlap: (float) The overlap thresh for suppressing unnecessary boxes. + top_k: (int) The Maximum number of box preds to consider. + Return: + The indices of the kept boxes with respect to num_priors. + """ + + keep = torch.Tensor(scores.size(0)).fill_(0).long() + if boxes.numel() == 0: + return keep + x1 = boxes[:, 0] + y1 = boxes[:, 1] + x2 = boxes[:, 2] + y2 = boxes[:, 3] + area = torch.mul(x2 - x1, y2 - y1) + v, idx = scores.sort(0) # sort in ascending order + # I = I[v >= 0.01] + idx = idx[-top_k:] # indices of the top-k largest vals + xx1 = boxes.new() + yy1 = boxes.new() + xx2 = boxes.new() + yy2 = boxes.new() + w = boxes.new() + h = boxes.new() + + # keep = torch.Tensor() + count = 0 + while idx.numel() > 0: + i = idx[-1] # index of current largest val + # keep.append(i) + keep[count] = i + count += 1 + if idx.size(0) == 1: + break + idx = idx[:-1] # remove kept element from view + # load bboxes of next highest vals + torch.index_select(x1, 0, idx, out=xx1) + torch.index_select(y1, 0, idx, out=yy1) + torch.index_select(x2, 0, idx, out=xx2) + torch.index_select(y2, 0, idx, out=yy2) + # store element-wise max with next highest score + xx1 = torch.clamp(xx1, min=x1[i]) + yy1 = torch.clamp(yy1, min=y1[i]) + xx2 = torch.clamp(xx2, max=x2[i]) + yy2 = torch.clamp(yy2, max=y2[i]) + w.resize_as_(xx2) + h.resize_as_(yy2) + w = xx2 - xx1 + h = yy2 - yy1 + # check sizes of xx1 and xx2.. after each iteration + w = torch.clamp(w, min=0.0) + h = torch.clamp(h, min=0.0) + inter = w * h + # IoU = i / (area(a) + area(b) - i) + rem_areas = torch.index_select(area, 0, idx) # load remaining areas) + union = (rem_areas - inter) + area[i] + IoU = inter / union # store result in iou + # keep only elements with an IoU <= overlap + idx = idx[IoU.le(overlap)] + return keep, count diff --git a/fooocus_extras/facexlib/parsing/__init__.py b/fooocus_extras/facexlib/parsing/__init__.py new file mode 100644 index 00000000..22c687c2 --- /dev/null +++ b/fooocus_extras/facexlib/parsing/__init__.py @@ -0,0 +1,24 @@ +import torch + +from fooocus_extras.facexlib.utils import load_file_from_url +from .bisenet import BiSeNet +from .parsenet import ParseNet + + +def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_rootpath=None): + if model_name == 'bisenet': + model = BiSeNet(num_class=19) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_bisenet.pth' + elif model_name == 'parsenet': + model = ParseNet(in_size=512, out_size=512, parsing_ch=19) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url( + url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) + load_net = torch.load(model_path, map_location=lambda storage, loc: storage) + model.load_state_dict(load_net, strict=True) + model.eval() + model = model.to(device) + return model diff --git a/fooocus_extras/facexlib/parsing/bisenet.py b/fooocus_extras/facexlib/parsing/bisenet.py new file mode 100644 index 00000000..3898cab7 --- /dev/null +++ b/fooocus_extras/facexlib/parsing/bisenet.py @@ -0,0 +1,140 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .resnet import ResNet18 + + +class ConvBNReLU(nn.Module): + + def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1): + super(ConvBNReLU, self).__init__() + self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False) + self.bn = nn.BatchNorm2d(out_chan) + + def forward(self, x): + x = self.conv(x) + x = F.relu(self.bn(x)) + return x + + +class BiSeNetOutput(nn.Module): + + def __init__(self, in_chan, mid_chan, num_class): + super(BiSeNetOutput, self).__init__() + self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) + self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False) + + def forward(self, x): + feat = self.conv(x) + out = self.conv_out(feat) + return out, feat + + +class AttentionRefinementModule(nn.Module): + + def __init__(self, in_chan, out_chan): + super(AttentionRefinementModule, self).__init__() + self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) + self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False) + self.bn_atten = nn.BatchNorm2d(out_chan) + self.sigmoid_atten = nn.Sigmoid() + + def forward(self, x): + feat = self.conv(x) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv_atten(atten) + atten = self.bn_atten(atten) + atten = self.sigmoid_atten(atten) + out = torch.mul(feat, atten) + return out + + +class ContextPath(nn.Module): + + def __init__(self): + super(ContextPath, self).__init__() + self.resnet = ResNet18() + self.arm16 = AttentionRefinementModule(256, 128) + self.arm32 = AttentionRefinementModule(512, 128) + self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) + + def forward(self, x): + feat8, feat16, feat32 = self.resnet(x) + h8, w8 = feat8.size()[2:] + h16, w16 = feat16.size()[2:] + h32, w32 = feat32.size()[2:] + + avg = F.avg_pool2d(feat32, feat32.size()[2:]) + avg = self.conv_avg(avg) + avg_up = F.interpolate(avg, (h32, w32), mode='nearest') + + feat32_arm = self.arm32(feat32) + feat32_sum = feat32_arm + avg_up + feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest') + feat32_up = self.conv_head32(feat32_up) + + feat16_arm = self.arm16(feat16) + feat16_sum = feat16_arm + feat32_up + feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest') + feat16_up = self.conv_head16(feat16_up) + + return feat8, feat16_up, feat32_up # x8, x8, x16 + + +class FeatureFusionModule(nn.Module): + + def __init__(self, in_chan, out_chan): + super(FeatureFusionModule, self).__init__() + self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) + self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False) + self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False) + self.relu = nn.ReLU(inplace=True) + self.sigmoid = nn.Sigmoid() + + def forward(self, fsp, fcp): + fcat = torch.cat([fsp, fcp], dim=1) + feat = self.convblk(fcat) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv1(atten) + atten = self.relu(atten) + atten = self.conv2(atten) + atten = self.sigmoid(atten) + feat_atten = torch.mul(feat, atten) + feat_out = feat_atten + feat + return feat_out + + +class BiSeNet(nn.Module): + + def __init__(self, num_class): + super(BiSeNet, self).__init__() + self.cp = ContextPath() + self.ffm = FeatureFusionModule(256, 256) + self.conv_out = BiSeNetOutput(256, 256, num_class) + self.conv_out16 = BiSeNetOutput(128, 64, num_class) + self.conv_out32 = BiSeNetOutput(128, 64, num_class) + + def forward(self, x, return_feat=False): + h, w = x.size()[2:] + feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature + feat_sp = feat_res8 # replace spatial path feature with res3b1 feature + feat_fuse = self.ffm(feat_sp, feat_cp8) + + out, feat = self.conv_out(feat_fuse) + out16, feat16 = self.conv_out16(feat_cp8) + out32, feat32 = self.conv_out32(feat_cp16) + + out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True) + out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True) + out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True) + + if return_feat: + feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True) + feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True) + feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True) + return out, out16, out32, feat, feat16, feat32 + else: + return out, out16, out32 diff --git a/fooocus_extras/facexlib/parsing/parsenet.py b/fooocus_extras/facexlib/parsing/parsenet.py new file mode 100644 index 00000000..e178ebe4 --- /dev/null +++ b/fooocus_extras/facexlib/parsing/parsenet.py @@ -0,0 +1,194 @@ +"""Modified from https://github.com/chaofengc/PSFRGAN +""" +import numpy as np +import torch.nn as nn +from torch.nn import functional as F + + +class NormLayer(nn.Module): + """Normalization Layers. + + Args: + channels: input channels, for batch norm and instance norm. + input_size: input shape without batch size, for layer norm. + """ + + def __init__(self, channels, normalize_shape=None, norm_type='bn'): + super(NormLayer, self).__init__() + norm_type = norm_type.lower() + self.norm_type = norm_type + if norm_type == 'bn': + self.norm = nn.BatchNorm2d(channels, affine=True) + elif norm_type == 'in': + self.norm = nn.InstanceNorm2d(channels, affine=False) + elif norm_type == 'gn': + self.norm = nn.GroupNorm(32, channels, affine=True) + elif norm_type == 'pixel': + self.norm = lambda x: F.normalize(x, p=2, dim=1) + elif norm_type == 'layer': + self.norm = nn.LayerNorm(normalize_shape) + elif norm_type == 'none': + self.norm = lambda x: x * 1.0 + else: + assert 1 == 0, f'Norm type {norm_type} not support.' + + def forward(self, x, ref=None): + if self.norm_type == 'spade': + return self.norm(x, ref) + else: + return self.norm(x) + + +class ReluLayer(nn.Module): + """Relu Layer. + + Args: + relu type: type of relu layer, candidates are + - ReLU + - LeakyReLU: default relu slope 0.2 + - PRelu + - SELU + - none: direct pass + """ + + def __init__(self, channels, relu_type='relu'): + super(ReluLayer, self).__init__() + relu_type = relu_type.lower() + if relu_type == 'relu': + self.func = nn.ReLU(True) + elif relu_type == 'leakyrelu': + self.func = nn.LeakyReLU(0.2, inplace=True) + elif relu_type == 'prelu': + self.func = nn.PReLU(channels) + elif relu_type == 'selu': + self.func = nn.SELU(True) + elif relu_type == 'none': + self.func = lambda x: x * 1.0 + else: + assert 1 == 0, f'Relu type {relu_type} not support.' + + def forward(self, x): + return self.func(x) + + +class ConvLayer(nn.Module): + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + scale='none', + norm_type='none', + relu_type='none', + use_pad=True, + bias=True): + super(ConvLayer, self).__init__() + self.use_pad = use_pad + self.norm_type = norm_type + if norm_type in ['bn']: + bias = False + + stride = 2 if scale == 'down' else 1 + + self.scale_func = lambda x: x + if scale == 'up': + self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest') + + self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2))) + self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias) + + self.relu = ReluLayer(out_channels, relu_type) + self.norm = NormLayer(out_channels, norm_type=norm_type) + + def forward(self, x): + out = self.scale_func(x) + if self.use_pad: + out = self.reflection_pad(out) + out = self.conv2d(out) + out = self.norm(out) + out = self.relu(out) + return out + + +class ResidualBlock(nn.Module): + """ + Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html + """ + + def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'): + super(ResidualBlock, self).__init__() + + if scale == 'none' and c_in == c_out: + self.shortcut_func = lambda x: x + else: + self.shortcut_func = ConvLayer(c_in, c_out, 3, scale) + + scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']} + scale_conf = scale_config_dict[scale] + + self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type) + self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none') + + def forward(self, x): + identity = self.shortcut_func(x) + + res = self.conv1(x) + res = self.conv2(res) + return identity + res + + +class ParseNet(nn.Module): + + def __init__(self, + in_size=128, + out_size=128, + min_feat_size=32, + base_ch=64, + parsing_ch=19, + res_depth=10, + relu_type='LeakyReLU', + norm_type='bn', + ch_range=[32, 256]): + super().__init__() + self.res_depth = res_depth + act_args = {'norm_type': norm_type, 'relu_type': relu_type} + min_ch, max_ch = ch_range + + ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731 + min_feat_size = min(in_size, min_feat_size) + + down_steps = int(np.log2(in_size // min_feat_size)) + up_steps = int(np.log2(out_size // min_feat_size)) + + # =============== define encoder-body-decoder ==================== + self.encoder = [] + self.encoder.append(ConvLayer(3, base_ch, 3, 1)) + head_ch = base_ch + for i in range(down_steps): + cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2) + self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args)) + head_ch = head_ch * 2 + + self.body = [] + for i in range(res_depth): + self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args)) + + self.decoder = [] + for i in range(up_steps): + cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2) + self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args)) + head_ch = head_ch // 2 + + self.encoder = nn.Sequential(*self.encoder) + self.body = nn.Sequential(*self.body) + self.decoder = nn.Sequential(*self.decoder) + self.out_img_conv = ConvLayer(ch_clip(head_ch), 3) + self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch) + + def forward(self, x): + feat = self.encoder(x) + x = feat + self.body(feat) + x = self.decoder(x) + out_img = self.out_img_conv(x) + out_mask = self.out_mask_conv(x) + return out_mask, out_img diff --git a/fooocus_extras/facexlib/parsing/resnet.py b/fooocus_extras/facexlib/parsing/resnet.py new file mode 100644 index 00000000..fec8e82c --- /dev/null +++ b/fooocus_extras/facexlib/parsing/resnet.py @@ -0,0 +1,69 @@ +import torch.nn as nn +import torch.nn.functional as F + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) + + +class BasicBlock(nn.Module): + + def __init__(self, in_chan, out_chan, stride=1): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(in_chan, out_chan, stride) + self.bn1 = nn.BatchNorm2d(out_chan) + self.conv2 = conv3x3(out_chan, out_chan) + self.bn2 = nn.BatchNorm2d(out_chan) + self.relu = nn.ReLU(inplace=True) + self.downsample = None + if in_chan != out_chan or stride != 1: + self.downsample = nn.Sequential( + nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(out_chan), + ) + + def forward(self, x): + residual = self.conv1(x) + residual = F.relu(self.bn1(residual)) + residual = self.conv2(residual) + residual = self.bn2(residual) + + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x) + + out = shortcut + residual + out = self.relu(out) + return out + + +def create_layer_basic(in_chan, out_chan, bnum, stride=1): + layers = [BasicBlock(in_chan, out_chan, stride=stride)] + for i in range(bnum - 1): + layers.append(BasicBlock(out_chan, out_chan, stride=1)) + return nn.Sequential(*layers) + + +class ResNet18(nn.Module): + + def __init__(self): + super(ResNet18, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1) + self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2) + self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2) + self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2) + + def forward(self, x): + x = self.conv1(x) + x = F.relu(self.bn1(x)) + x = self.maxpool(x) + + x = self.layer1(x) + feat8 = self.layer2(x) # 1/8 + feat16 = self.layer3(feat8) # 1/16 + feat32 = self.layer4(feat16) # 1/32 + return feat8, feat16, feat32 diff --git a/fooocus_extras/facexlib/utils/__init__.py b/fooocus_extras/facexlib/utils/__init__.py new file mode 100644 index 00000000..706e077a --- /dev/null +++ b/fooocus_extras/facexlib/utils/__init__.py @@ -0,0 +1,7 @@ +from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back +from .misc import img2tensor, load_file_from_url, scandir + +__all__ = [ + 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back', + 'img2tensor', 'scandir' +] diff --git a/fooocus_extras/facexlib/utils/face_restoration_helper.py b/fooocus_extras/facexlib/utils/face_restoration_helper.py new file mode 100644 index 00000000..9570ef3d --- /dev/null +++ b/fooocus_extras/facexlib/utils/face_restoration_helper.py @@ -0,0 +1,374 @@ +import cv2 +import numpy as np +import os +import torch +from torchvision.transforms.functional import normalize + +from fooocus_extras.facexlib.detection import init_detection_model +from fooocus_extras.facexlib.parsing import init_parsing_model +from fooocus_extras.facexlib.utils.misc import img2tensor, imwrite + + +def get_largest_face(det_faces, h, w): + + def get_location(val, length): + if val < 0: + return 0 + elif val > length: + return length + else: + return val + + face_areas = [] + for det_face in det_faces: + left = get_location(det_face[0], w) + right = get_location(det_face[2], w) + top = get_location(det_face[1], h) + bottom = get_location(det_face[3], h) + face_area = (right - left) * (bottom - top) + face_areas.append(face_area) + largest_idx = face_areas.index(max(face_areas)) + return det_faces[largest_idx], largest_idx + + +def get_center_face(det_faces, h=0, w=0, center=None): + if center is not None: + center = np.array(center) + else: + center = np.array([w / 2, h / 2]) + center_dist = [] + for det_face in det_faces: + face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]) + dist = np.linalg.norm(face_center - center) + center_dist.append(dist) + center_idx = center_dist.index(min(center_dist)) + return det_faces[center_idx], center_idx + + +class FaceRestoreHelper(object): + """Helper for the face restoration pipeline (base class).""" + + def __init__(self, + upscale_factor, + face_size=512, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + save_ext='png', + template_3points=False, + pad_blur=False, + use_parse=False, + device=None, + model_rootpath=None): + self.template_3points = template_3points # improve robustness + self.upscale_factor = upscale_factor + # the cropped face ratio based on the square face + self.crop_ratio = crop_ratio # (h, w) + assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1' + self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0])) + + if self.template_3points: + self.face_template = np.array([[192, 240], [319, 240], [257, 371]]) + else: + # standard 5 landmarks for FFHQ faces with 512 x 512 + self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], + [201.26117, 371.41043], [313.08905, 371.15118]]) + self.face_template = self.face_template * (face_size / 512.0) + if self.crop_ratio[0] > 1: + self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2 + if self.crop_ratio[1] > 1: + self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2 + self.save_ext = save_ext + self.pad_blur = pad_blur + if self.pad_blur is True: + self.template_3points = False + + self.all_landmarks_5 = [] + self.det_faces = [] + self.affine_matrices = [] + self.inverse_affine_matrices = [] + self.cropped_faces = [] + self.restored_faces = [] + self.pad_input_imgs = [] + + if device is None: + self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + else: + self.device = device + + # init face detection model + self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath) + + # init face parsing model + self.use_parse = use_parse + self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath) + + def set_upscale_factor(self, upscale_factor): + self.upscale_factor = upscale_factor + + def read_image(self, img): + """img can be image path or cv2 loaded image.""" + # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255] + if isinstance(img, str): + img = cv2.imread(img) + + if np.max(img) > 256: # 16-bit image + img = img / 65535 * 255 + if len(img.shape) == 2: # gray image + img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) + elif img.shape[2] == 4: # RGBA image with alpha channel + img = img[:, :, 0:3] + + self.input_img = img + + def get_face_landmarks_5(self, + only_keep_largest=False, + only_center_face=False, + resize=None, + blur_ratio=0.01, + eye_dist_threshold=None): + if resize is None: + scale = 1 + input_img = self.input_img + else: + h, w = self.input_img.shape[0:2] + scale = min(h, w) / resize + h, w = int(h / scale), int(w / scale) + input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4) + + with torch.no_grad(): + bboxes = self.face_det.detect_faces(input_img, 0.97) * scale + for bbox in bboxes: + # remove faces with too small eye distance: side faces or too small faces + eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]]) + if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold): + continue + + if self.template_3points: + landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)]) + else: + landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)]) + self.all_landmarks_5.append(landmark) + self.det_faces.append(bbox[0:5]) + if len(self.det_faces) == 0: + return 0 + if only_keep_largest: + h, w, _ = self.input_img.shape + self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w) + self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]] + elif only_center_face: + h, w, _ = self.input_img.shape + self.det_faces, center_idx = get_center_face(self.det_faces, h, w) + self.all_landmarks_5 = [self.all_landmarks_5[center_idx]] + + # pad blurry images + if self.pad_blur: + self.pad_input_imgs = [] + for landmarks in self.all_landmarks_5: + # get landmarks + eye_left = landmarks[0, :] + eye_right = landmarks[1, :] + eye_avg = (eye_left + eye_right) * 0.5 + mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5 + eye_to_eye = eye_right - eye_left + eye_to_mouth = mouth_avg - eye_avg + + # Get the oriented crop rectangle + # x: half width of the oriented crop rectangle + x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] + # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise + # norm with the hypotenuse: get the direction + x /= np.hypot(*x) # get the hypotenuse of a right triangle + rect_scale = 1.5 + x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) + # y: half height of the oriented crop rectangle + y = np.flipud(x) * [-1, 1] + + # c: center + c = eye_avg + eye_to_mouth * 0.1 + # quad: (left_top, left_bottom, right_bottom, right_top) + quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) + # qsize: side length of the square + qsize = np.hypot(*x) * 2 + border = max(int(np.rint(qsize * 0.1)), 3) + + # get pad + # pad: (width_left, height_top, width_right, height_bottom) + pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + pad = [ + max(-pad[0] + border, 1), + max(-pad[1] + border, 1), + max(pad[2] - self.input_img.shape[0] + border, 1), + max(pad[3] - self.input_img.shape[1] + border, 1) + ] + + if max(pad) > 1: + # pad image + pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') + # modify landmark coords + landmarks[:, 0] += pad[0] + landmarks[:, 1] += pad[1] + # blur pad images + h, w, _ = pad_img.shape + y, x, _ = np.ogrid[:h, :w, :1] + mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], + np.float32(w - 1 - x) / pad[2]), + 1.0 - np.minimum(np.float32(y) / pad[1], + np.float32(h - 1 - y) / pad[3])) + blur = int(qsize * blur_ratio) + if blur % 2 == 0: + blur += 1 + blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur)) + # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0) + + pad_img = pad_img.astype('float32') + pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) + pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0) + pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255] + self.pad_input_imgs.append(pad_img) + else: + self.pad_input_imgs.append(np.copy(self.input_img)) + + return len(self.all_landmarks_5) + + def align_warp_face(self, save_cropped_path=None, border_mode='constant'): + """Align and warp faces with face template. + """ + if self.pad_blur: + assert len(self.pad_input_imgs) == len( + self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}' + for idx, landmark in enumerate(self.all_landmarks_5): + # use 5 landmarks to get affine matrix + # use cv2.LMEDS method for the equivalence to skimage transform + # ref: https://blog.csdn.net/yichxi/article/details/115827338 + affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0] + self.affine_matrices.append(affine_matrix) + # warp and crop faces + if border_mode == 'constant': + border_mode = cv2.BORDER_CONSTANT + elif border_mode == 'reflect101': + border_mode = cv2.BORDER_REFLECT101 + elif border_mode == 'reflect': + border_mode = cv2.BORDER_REFLECT + if self.pad_blur: + input_img = self.pad_input_imgs[idx] + else: + input_img = self.input_img + cropped_face = cv2.warpAffine( + input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray + self.cropped_faces.append(cropped_face) + # save the cropped face + if save_cropped_path is not None: + path = os.path.splitext(save_cropped_path)[0] + save_path = f'{path}_{idx:02d}.{self.save_ext}' + imwrite(cropped_face, save_path) + + def get_inverse_affine(self, save_inverse_affine_path=None): + """Get inverse affine matrix.""" + for idx, affine_matrix in enumerate(self.affine_matrices): + inverse_affine = cv2.invertAffineTransform(affine_matrix) + inverse_affine *= self.upscale_factor + self.inverse_affine_matrices.append(inverse_affine) + # save inverse affine matrices + if save_inverse_affine_path is not None: + path, _ = os.path.splitext(save_inverse_affine_path) + save_path = f'{path}_{idx:02d}.pth' + torch.save(inverse_affine, save_path) + + def add_restored_face(self, face): + self.restored_faces.append(face) + + def paste_faces_to_input_image(self, save_path=None, upsample_img=None): + h, w, _ = self.input_img.shape + h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor) + + if upsample_img is None: + # simply resize the background + upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) + else: + upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) + + assert len(self.restored_faces) == len( + self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.') + for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices): + # Add an offset to inverse affine matrix, for more precise back alignment + if self.upscale_factor > 1: + extra_offset = 0.5 * self.upscale_factor + else: + extra_offset = 0 + inverse_affine[:, 2] += extra_offset + inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up)) + + if self.use_parse: + # inference + face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR) + face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True) + normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) + face_input = torch.unsqueeze(face_input, 0).to(self.device) + with torch.no_grad(): + out = self.face_parse(face_input)[0] + out = out.argmax(dim=1).squeeze().cpu().numpy() + + mask = np.zeros(out.shape) + MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0] + for idx, color in enumerate(MASK_COLORMAP): + mask[out == idx] = color + # blur the mask + mask = cv2.GaussianBlur(mask, (101, 101), 11) + mask = cv2.GaussianBlur(mask, (101, 101), 11) + # remove the black borders + thres = 10 + mask[:thres, :] = 0 + mask[-thres:, :] = 0 + mask[:, :thres] = 0 + mask[:, -thres:] = 0 + mask = mask / 255. + + mask = cv2.resize(mask, restored_face.shape[:2]) + mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3) + inv_soft_mask = mask[:, :, None] + pasted_face = inv_restored + + else: # use square parse maps + mask = np.ones(self.face_size, dtype=np.float32) + inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up)) + # remove the black borders + inv_mask_erosion = cv2.erode( + inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)) + pasted_face = inv_mask_erosion[:, :, None] * inv_restored + total_face_area = np.sum(inv_mask_erosion) # // 3 + # compute the fusion edge based on the area of face + w_edge = int(total_face_area**0.5) // 20 + erosion_radius = w_edge * 2 + inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) + blur_size = w_edge * 2 + inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) + if len(upsample_img.shape) == 2: # upsample_img is gray image + upsample_img = upsample_img[:, :, None] + inv_soft_mask = inv_soft_mask[:, :, None] + + if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel + alpha = upsample_img[:, :, 3:] + upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3] + upsample_img = np.concatenate((upsample_img, alpha), axis=2) + else: + upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img + + if np.max(upsample_img) > 256: # 16-bit image + upsample_img = upsample_img.astype(np.uint16) + else: + upsample_img = upsample_img.astype(np.uint8) + if save_path is not None: + path = os.path.splitext(save_path)[0] + save_path = f'{path}.{self.save_ext}' + imwrite(upsample_img, save_path) + return upsample_img + + def clean_all(self): + self.all_landmarks_5 = [] + self.restored_faces = [] + self.affine_matrices = [] + self.cropped_faces = [] + self.inverse_affine_matrices = [] + self.det_faces = [] + self.pad_input_imgs = [] diff --git a/fooocus_extras/facexlib/utils/face_utils.py b/fooocus_extras/facexlib/utils/face_utils.py new file mode 100644 index 00000000..c7c785f4 --- /dev/null +++ b/fooocus_extras/facexlib/utils/face_utils.py @@ -0,0 +1,250 @@ +import cv2 +import numpy as np +import torch + + +def compute_increased_bbox(bbox, increase_area, preserve_aspect=True): + left, top, right, bot = bbox + width = right - left + height = bot - top + + if preserve_aspect: + width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) + height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) + else: + width_increase = height_increase = increase_area + left = int(left - width_increase * width) + top = int(top - height_increase * height) + right = int(right + width_increase * width) + bot = int(bot + height_increase * height) + return (left, top, right, bot) + + +def get_valid_bboxes(bboxes, h, w): + left = max(bboxes[0], 0) + top = max(bboxes[1], 0) + right = min(bboxes[2], w) + bottom = min(bboxes[3], h) + return (left, top, right, bottom) + + +def align_crop_face_landmarks(img, + landmarks, + output_size, + transform_size=None, + enable_padding=True, + return_inverse_affine=False, + shrink_ratio=(1, 1)): + """Align and crop face with landmarks. + + The output_size and transform_size are based on width. The height is + adjusted based on shrink_ratio_h/shring_ration_w. + + Modified from: + https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py + + Args: + img (Numpy array): Input image. + landmarks (Numpy array): 5 or 68 or 98 landmarks. + output_size (int): Output face size. + transform_size (ing): Transform size. Usually the four time of + output_size. + enable_padding (float): Default: True. + shrink_ratio (float | tuple[float] | list[float]): Shring the whole + face for height and width (crop larger area). Default: (1, 1). + + Returns: + (Numpy array): Cropped face. + """ + lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5 + + if isinstance(shrink_ratio, (float, int)): + shrink_ratio = (shrink_ratio, shrink_ratio) + if transform_size is None: + transform_size = output_size * 4 + + # Parse landmarks + lm = np.array(landmarks) + if lm.shape[0] == 5 and lm_type == 'retinaface_5': + eye_left = lm[0] + eye_right = lm[1] + mouth_avg = (lm[3] + lm[4]) * 0.5 + elif lm.shape[0] == 5 and lm_type == 'dlib_5': + lm_eye_left = lm[2:4] + lm_eye_right = lm[0:2] + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + mouth_avg = lm[4] + elif lm.shape[0] == 68: + lm_eye_left = lm[36:42] + lm_eye_right = lm[42:48] + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + mouth_avg = (lm[48] + lm[54]) * 0.5 + elif lm.shape[0] == 98: + lm_eye_left = lm[60:68] + lm_eye_right = lm[68:76] + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + mouth_avg = (lm[76] + lm[82]) * 0.5 + + eye_avg = (eye_left + eye_right) * 0.5 + eye_to_eye = eye_right - eye_left + eye_to_mouth = mouth_avg - eye_avg + + # Get the oriented crop rectangle + # x: half width of the oriented crop rectangle + x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] + # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise + # norm with the hypotenuse: get the direction + x /= np.hypot(*x) # get the hypotenuse of a right triangle + rect_scale = 1 # TODO: you can edit it to get larger rect + x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) + # y: half height of the oriented crop rectangle + y = np.flipud(x) * [-1, 1] + + x *= shrink_ratio[1] # width + y *= shrink_ratio[0] # height + + # c: center + c = eye_avg + eye_to_mouth * 0.1 + # quad: (left_top, left_bottom, right_bottom, right_top) + quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) + # qsize: side length of the square + qsize = np.hypot(*x) * 2 + + quad_ori = np.copy(quad) + # Shrink, for large face + # TODO: do we really need shrink + shrink = int(np.floor(qsize / output_size * 0.5)) + if shrink > 1: + h, w = img.shape[0:2] + rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink))) + img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA) + quad /= shrink + qsize /= shrink + + # Crop + h, w = img.shape[0:2] + border = max(int(np.rint(qsize * 0.1)), 3) + crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h)) + if crop[2] - crop[0] < w or crop[3] - crop[1] < h: + img = img[crop[1]:crop[3], crop[0]:crop[2], :] + quad -= crop[0:2] + + # Pad + # pad: (width_left, height_top, width_right, height_bottom) + h, w = img.shape[0:2] + pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0)) + if enable_padding and max(pad) > border - 4: + pad = np.maximum(pad, int(np.rint(qsize * 0.3))) + img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') + h, w = img.shape[0:2] + y, x, _ = np.ogrid[:h, :w, :1] + mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], + np.float32(w - 1 - x) / pad[2]), + 1.0 - np.minimum(np.float32(y) / pad[1], + np.float32(h - 1 - y) / pad[3])) + blur = int(qsize * 0.02) + if blur % 2 == 0: + blur += 1 + blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur)) + + img = img.astype('float32') + img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) + img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) + img = np.clip(img, 0, 255) # float32, [0, 255] + quad += pad[:2] + + # Transform use cv2 + h_ratio = shrink_ratio[0] / shrink_ratio[1] + dst_h, dst_w = int(transform_size * h_ratio), transform_size + template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) + # use cv2.LMEDS method for the equivalence to skimage transform + # ref: https://blog.csdn.net/yichxi/article/details/115827338 + affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0] + cropped_face = cv2.warpAffine( + img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray + + if output_size < transform_size: + cropped_face = cv2.resize( + cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR) + + if return_inverse_affine: + dst_h, dst_w = int(output_size * h_ratio), output_size + template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) + # use cv2.LMEDS method for the equivalence to skimage transform + # ref: https://blog.csdn.net/yichxi/article/details/115827338 + affine_matrix = cv2.estimateAffinePartial2D( + quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] + inverse_affine = cv2.invertAffineTransform(affine_matrix) + else: + inverse_affine = None + return cropped_face, inverse_affine + + +def paste_face_back(img, face, inverse_affine): + h, w = img.shape[0:2] + face_h, face_w = face.shape[0:2] + inv_restored = cv2.warpAffine(face, inverse_affine, (w, h)) + mask = np.ones((face_h, face_w, 3), dtype=np.float32) + inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h)) + # remove the black borders + inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8)) + inv_restored_remove_border = inv_mask_erosion * inv_restored + total_face_area = np.sum(inv_mask_erosion) // 3 + # compute the fusion edge based on the area of face + w_edge = int(total_face_area**0.5) // 20 + erosion_radius = w_edge * 2 + inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) + blur_size = w_edge * 2 + inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) + img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img + # float32, [0, 255] + return img + + +if __name__ == '__main__': + import os + + from fooocus_extras.facexlib.detection import init_detection_model + from fooocus_extras.facexlib.utils.face_restoration_helper import get_largest_face + from fooocus_extras.facexlib.visualization import visualize_detection + + img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png' + img_name = os.splitext(os.path.basename(img_path))[0] + + # initialize model + det_net = init_detection_model('retinaface_resnet50', half=False) + img_ori = cv2.imread(img_path) + h, w = img_ori.shape[0:2] + # if larger than 800, scale it + scale = max(h / 800, w / 800) + if scale > 1: + img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR) + + with torch.no_grad(): + bboxes = det_net.detect_faces(img, 0.97) + if scale > 1: + bboxes *= scale # the score is incorrect + bboxes = get_largest_face(bboxes, h, w)[0] + visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png') + + landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) + + cropped_face, inverse_affine = align_crop_face_landmarks( + img_ori, + landmarks, + output_size=512, + transform_size=None, + enable_padding=True, + return_inverse_affine=True, + shrink_ratio=(1, 1)) + + cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face) + img = paste_face_back(img_ori, cropped_face, inverse_affine) + cv2.imwrite(f'tmp/{img_name}_back.png', img) diff --git a/fooocus_extras/facexlib/utils/misc.py b/fooocus_extras/facexlib/utils/misc.py new file mode 100644 index 00000000..b1a597ce --- /dev/null +++ b/fooocus_extras/facexlib/utils/misc.py @@ -0,0 +1,118 @@ +import cv2 +import os +import os.path as osp +import torch +from torch.hub import download_url_to_file, get_dir +from urllib.parse import urlparse + +ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + + +def imwrite(img, file_path, params=None, auto_mkdir=True): + """Write image to file. + + Args: + img (ndarray): Image array to be written. + file_path (str): Image file path. + params (None or list): Same as opencv's :func:`imwrite` interface. + auto_mkdir (bool): If the parent folder of `file_path` does not exist, + whether to create it automatically. + + Returns: + bool: Successful or not. + """ + if auto_mkdir: + dir_name = os.path.abspath(os.path.dirname(file_path)) + os.makedirs(dir_name, exist_ok=True) + return cv2.imwrite(file_path, img, params) + + +def img2tensor(imgs, bgr2rgb=True, float32=True): + """Numpy array to tensor. + + Args: + imgs (list[ndarray] | ndarray): Input images. + bgr2rgb (bool): Whether to change bgr to rgb. + float32 (bool): Whether to change to float32. + + Returns: + list[tensor] | tensor: Tensor images. If returned results only have + one element, just return tensor. + """ + + def _totensor(img, bgr2rgb, float32): + if img.shape[2] == 3 and bgr2rgb: + if img.dtype == 'float64': + img = img.astype('float32') + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = torch.from_numpy(img.transpose(2, 0, 1)) + if float32: + img = img.float() + return img + + if isinstance(imgs, list): + return [_totensor(img, bgr2rgb, float32) for img in imgs] + else: + return _totensor(imgs, bgr2rgb, float32) + + +def load_file_from_url(url, model_dir=None, progress=True, file_name=None, save_dir=None): + """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py + """ + if model_dir is None: + hub_dir = get_dir() + model_dir = os.path.join(hub_dir, 'checkpoints') + + if save_dir is None: + save_dir = os.path.join(ROOT_DIR, model_dir) + os.makedirs(save_dir, exist_ok=True) + + parts = urlparse(url) + filename = os.path.basename(parts.path) + if file_name is not None: + filename = file_name + cached_file = os.path.abspath(os.path.join(save_dir, filename)) + if not os.path.exists(cached_file): + print(f'Downloading: "{url}" to {cached_file}\n') + download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) + return cached_file + + +def scandir(dir_path, suffix=None, recursive=False, full_path=False): + """Scan a directory to find the interested files. + Args: + dir_path (str): Path of the directory. + suffix (str | tuple(str), optional): File suffix that we are + interested in. Default: None. + recursive (bool, optional): If set to True, recursively scan the + directory. Default: False. + full_path (bool, optional): If set to True, include the dir_path. + Default: False. + Returns: + A generator for all the interested files with relative paths. + """ + + if (suffix is not None) and not isinstance(suffix, (str, tuple)): + raise TypeError('"suffix" must be a string or tuple of strings') + + root = dir_path + + def _scandir(dir_path, suffix, recursive): + for entry in os.scandir(dir_path): + if not entry.name.startswith('.') and entry.is_file(): + if full_path: + return_path = entry.path + else: + return_path = osp.relpath(entry.path, root) + + if suffix is None: + yield return_path + elif return_path.endswith(suffix): + yield return_path + else: + if recursive: + yield from _scandir(entry.path, suffix=suffix, recursive=recursive) + else: + continue + + return _scandir(dir_path, suffix=suffix, recursive=recursive) diff --git a/fooocus_version.py b/fooocus_version.py index 7442b9bb..36cc32c8 100644 --- a/fooocus_version.py +++ b/fooocus_version.py @@ -1 +1 @@ -version = '2.1.796' +version = '2.1.797' diff --git a/requirements_versions.txt b/requirements_versions.txt index 02f2ff72..5d5af5d6 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -15,4 +15,3 @@ gradio==3.41.2 pygit2==1.12.2 opencv-contrib-python==4.8.0.74 httpx==0.24.1 -facexlib==0.3.0