[Fooocus 2.0.60] Fooocus Inpaint or Outpaint (Midjourney Left/Right/Top/Bottom) (#402)
[Fooocus 2.0.60] Fooocus Inpaint or Outpaint (Midjourney Left/Right/Top/Bottom) (#402)
This commit is contained in:
parent
43e59c1676
commit
b61642ecba
|
|
@ -6,6 +6,7 @@ __pycache__
|
|||
lena.png
|
||||
lena_result.png
|
||||
lena_test.py
|
||||
/modules/*.png
|
||||
/repositories
|
||||
/venv
|
||||
/tmp
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
version = '2.0.54'
|
||||
version = '2.0.60'
|
||||
|
|
|
|||
|
|
@ -1,4 +1,6 @@
|
|||
import threading
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
buffer = []
|
||||
|
|
@ -19,6 +21,7 @@ def worker():
|
|||
import modules.patch
|
||||
import modules.virtual_memory as virtual_memory
|
||||
import comfy.model_management
|
||||
import modules.inpaint_worker as inpaint_worker
|
||||
|
||||
from modules.sdxl_styles import apply_style, aspect_ratios, fooocus_expansion
|
||||
from modules.private_logger import log
|
||||
|
|
@ -46,8 +49,10 @@ def worker():
|
|||
aspect_ratios_selction, image_number, image_seed, sharpness, \
|
||||
base_model_name, refiner_model_name, \
|
||||
l1, w1, l2, w2, l3, w3, l4, w4, l5, w5, \
|
||||
input_image_checkbox, \
|
||||
uov_method, uov_input_image = task
|
||||
input_image_checkbox, current_tab, \
|
||||
uov_method, uov_input_image, outpaint_selections, inpaint_input_image = task
|
||||
|
||||
outpaint_selections = [o.lower() for o in outpaint_selections]
|
||||
|
||||
loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)]
|
||||
|
||||
|
|
@ -63,9 +68,11 @@ def worker():
|
|||
|
||||
use_style = len(style_selections) > 0
|
||||
modules.patch.sharpness = sharpness
|
||||
modules.patch.negative_adm = True
|
||||
initial_latent = None
|
||||
denoising_strength = 1.0
|
||||
tiled = False
|
||||
inpaint_worker.current_task = None
|
||||
|
||||
if performance_selction == 'Speed':
|
||||
steps = 30
|
||||
|
|
@ -80,7 +87,7 @@ def worker():
|
|||
|
||||
if input_image_checkbox:
|
||||
progressbar(0, 'Image processing ...')
|
||||
if uov_method != flags.disabled and uov_input_image is not None:
|
||||
if current_tab == 'uov' and uov_method != flags.disabled and uov_input_image is not None:
|
||||
uov_input_image = HWC3(uov_input_image)
|
||||
if 'vary' in uov_method:
|
||||
if not image_is_generated_in_current_ui(uov_input_image, ui_width=width, ui_height=height):
|
||||
|
|
@ -156,6 +163,49 @@ def worker():
|
|||
width = W * 8
|
||||
height = H * 8
|
||||
print(f'Final resolution is {str((height, width))}.')
|
||||
if current_tab == 'inpaint' and isinstance(inpaint_input_image, dict):
|
||||
inpaint_image = inpaint_input_image['image']
|
||||
inpaint_mask = inpaint_input_image['mask'][:, :, 0]
|
||||
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
|
||||
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
|
||||
if len(outpaint_selections) > 0:
|
||||
H, W, C = inpaint_image.shape
|
||||
if 'top' in outpaint_selections:
|
||||
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
|
||||
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant', constant_values=255)
|
||||
if 'bottom' in outpaint_selections:
|
||||
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
|
||||
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant', constant_values=255)
|
||||
|
||||
H, W, C = inpaint_image.shape
|
||||
if 'left' in outpaint_selections:
|
||||
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge')
|
||||
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant', constant_values=255)
|
||||
if 'right' in outpaint_selections:
|
||||
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge')
|
||||
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant', constant_values=255)
|
||||
|
||||
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
|
||||
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
|
||||
|
||||
inpaint_worker.current_task = inpaint_worker.InpaintWorker(image=inpaint_image, mask=inpaint_mask,
|
||||
is_outpaint=len(outpaint_selections) > 0)
|
||||
|
||||
# print(f'Inpaint task: {str((height, width))}')
|
||||
# outputs.append(['results', inpaint_worker.current_task.visualize_mask_processing()])
|
||||
# return
|
||||
|
||||
inpaint_pixels = core.numpy_to_pytorch(inpaint_worker.current_task.image_ready)
|
||||
progressbar(0, 'VAE encoding ...')
|
||||
initial_latent = core.encode_vae(vae=pipeline.xl_base_patched.vae, pixels=inpaint_pixels)
|
||||
inpaint_latent = initial_latent['samples']
|
||||
B, C, H, W = inpaint_latent.shape
|
||||
inpaint_mask = core.numpy_to_pytorch(inpaint_worker.current_task.mask_ready[None])
|
||||
inpaint_mask = torch.nn.functional.avg_pool2d(inpaint_mask, (8, 8))
|
||||
inpaint_mask = torch.nn.functional.interpolate(inpaint_mask, (H, W), mode='bilinear')
|
||||
width = W * 8
|
||||
height = H * 8
|
||||
inpaint_worker.current_task.load_latent(latent=inpaint_latent, mask=inpaint_mask)
|
||||
|
||||
progressbar(1, 'Initializing ...')
|
||||
|
||||
|
|
@ -262,6 +312,8 @@ def worker():
|
|||
f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling',
|
||||
y)])
|
||||
|
||||
print(f'[ADM] Negative ADM = {modules.patch.negative_adm}')
|
||||
|
||||
outputs.append(['preview', (13, 'Starting tasks ...', None)])
|
||||
for current_task_id, task in enumerate(tasks):
|
||||
try:
|
||||
|
|
@ -279,6 +331,9 @@ def worker():
|
|||
tiled=tiled
|
||||
)
|
||||
|
||||
if inpaint_worker.current_task is not None:
|
||||
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
|
||||
|
||||
for x in imgs:
|
||||
d = [
|
||||
('Prompt', raw_prompt),
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ from comfy.sd import load_checkpoint_guess_config
|
|||
from nodes import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled
|
||||
from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models
|
||||
from comfy.model_base import SDXLRefiner
|
||||
from modules.samplers_advanced import KSampler, KSamplerWithRefiner
|
||||
from modules.samplers_advanced import KSamplerBasic, KSamplerWithRefiner
|
||||
from modules.patch import patch_all
|
||||
|
||||
|
||||
|
|
@ -147,7 +147,7 @@ def get_previewer(device, latent_format):
|
|||
|
||||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
|
||||
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_fooocus_2m_sde_inpaint_seamless',
|
||||
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
|
||||
force_full_denoise=False, callback_function=None):
|
||||
# SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
||||
|
|
@ -199,7 +199,7 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sa
|
|||
|
||||
models = load_additional_models(positive, negative, model.model_dtype())
|
||||
|
||||
sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
|
||||
sampler = KSamplerBasic(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler,
|
||||
denoise=denoise, model_options=model.model_options)
|
||||
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image,
|
||||
|
|
@ -220,7 +220,7 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sa
|
|||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def ksampler_with_refiner(model, positive, negative, refiner, refiner_positive, refiner_negative, latent,
|
||||
seed=None, steps=30, refiner_switch_step=20, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
|
||||
seed=None, steps=30, refiner_switch_step=20, cfg=7.0, sampler_name='dpmpp_fooocus_2m_sde_inpaint_seamless',
|
||||
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
|
||||
force_full_denoise=False, callback_function=None):
|
||||
# SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ import modules.path
|
|||
import modules.virtual_memory as virtual_memory
|
||||
|
||||
from comfy.model_base import SDXL, SDXLRefiner
|
||||
from modules.patch import cfg_patched
|
||||
from modules.patch import cfg_patched, patched_model_function
|
||||
from modules.expansion import FooocusExpansion
|
||||
|
||||
|
||||
|
|
@ -201,10 +201,14 @@ def patch_all_models():
|
|||
assert xl_base_patched is not None
|
||||
|
||||
xl_base.unet.model_options['sampler_cfg_function'] = cfg_patched
|
||||
xl_base.unet.model_options['model_function_wrapper'] = patched_model_function
|
||||
|
||||
xl_base_patched.unet.model_options['sampler_cfg_function'] = cfg_patched
|
||||
xl_base_patched.unet.model_options['model_function_wrapper'] = patched_model_function
|
||||
|
||||
if xl_refiner is not None:
|
||||
xl_refiner.unet.model_options['sampler_cfg_function'] = cfg_patched
|
||||
xl_refiner.unet.model_options['model_function_wrapper'] = patched_model_function
|
||||
|
||||
return
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
disabled = 'Disabled'
|
||||
enabled = 'Enabled'
|
||||
subtle_variation = 'Vary (Subtle)'
|
||||
strong_variation = 'Vary (Strong)'
|
||||
upscale_15 = 'Upscale (1.5x)'
|
||||
|
|
|
|||
|
|
@ -0,0 +1,180 @@
|
|||
import numpy as np
|
||||
|
||||
from PIL import Image, ImageFilter, ImageOps
|
||||
from modules.util import resample_image
|
||||
|
||||
|
||||
current_task = None
|
||||
|
||||
|
||||
def morphological_soft_open(x):
|
||||
k = 12
|
||||
x = Image.fromarray(x)
|
||||
for _ in range(k):
|
||||
x = x.filter(ImageFilter.MaxFilter(3))
|
||||
x = x.filter(ImageFilter.BoxBlur(k * 2 + 1))
|
||||
x = np.array(x)
|
||||
return x
|
||||
|
||||
|
||||
def box_blur(x, k):
|
||||
x = Image.fromarray(x)
|
||||
x = x.filter(ImageFilter.BoxBlur(k))
|
||||
return np.array(x)
|
||||
|
||||
|
||||
def threshold_0_255(x):
|
||||
y = np.zeros_like(x)
|
||||
y[x > 127] = 255
|
||||
return y
|
||||
|
||||
|
||||
def morphological_hard_open(x):
|
||||
y = threshold_0_255(x)
|
||||
z = morphological_soft_open(x)
|
||||
z[y > 127] = 255
|
||||
return z
|
||||
|
||||
|
||||
def imsave(x, path):
|
||||
x = Image.fromarray(x)
|
||||
x.save(path)
|
||||
|
||||
|
||||
def regulate_abcd(x, a, b, c, d):
|
||||
H, W = x.shape[:2]
|
||||
if a < 0:
|
||||
a = 0
|
||||
if a > H:
|
||||
a = H
|
||||
if b < 0:
|
||||
b = 0
|
||||
if b > H:
|
||||
b = H
|
||||
if c < 0:
|
||||
c = 0
|
||||
if c > W:
|
||||
c = W
|
||||
if d < 0:
|
||||
d = 0
|
||||
if d > W:
|
||||
d = W
|
||||
return int(a), int(b), int(c), int(d)
|
||||
|
||||
|
||||
def compute_initial_abcd(x):
|
||||
indices = np.where(x)
|
||||
a = np.min(indices[0]) - 64
|
||||
b = np.max(indices[0]) + 65
|
||||
c = np.min(indices[1]) - 64
|
||||
d = np.max(indices[1]) + 65
|
||||
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
||||
return a, b, c, d
|
||||
|
||||
|
||||
def area_abcd(a, b, c, d):
|
||||
return (b - a) * (d - c)
|
||||
|
||||
|
||||
def solve_abcd(x, a, b, c, d, k, outpaint):
|
||||
H, W = x.shape[:2]
|
||||
if outpaint:
|
||||
return 0, H, 0, W
|
||||
min_area = H * W * k
|
||||
while area_abcd(a, b, c, d) < min_area:
|
||||
if (b - a) < (d - c):
|
||||
a -= 1
|
||||
b += 1
|
||||
else:
|
||||
c -= 1
|
||||
d += 1
|
||||
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
||||
return a, b, c, d
|
||||
|
||||
|
||||
def fooocus_fill(image, mask):
|
||||
current_image = image.copy()
|
||||
raw_image = image.copy()
|
||||
area = np.where(mask < 127)
|
||||
store = raw_image[area]
|
||||
|
||||
for k, repeats in [(64, 4), (32, 4), (16, 4), (4, 4), (2, 4)]:
|
||||
for _ in range(repeats):
|
||||
current_image = box_blur(current_image, k)
|
||||
current_image[area] = store
|
||||
|
||||
return current_image
|
||||
|
||||
|
||||
class InpaintWorker:
|
||||
def __init__(self, image, mask, is_outpaint):
|
||||
# mask processing
|
||||
self.image_raw = fooocus_fill(image, mask)
|
||||
self.mask_raw_user_input = mask
|
||||
self.mask_raw_soft = morphological_hard_open(mask)
|
||||
self.mask_raw_fg = (self.mask_raw_soft == 255).astype(np.uint8) * 255
|
||||
self.mask_raw_bg = (self.mask_raw_soft == 0).astype(np.uint8) * 255
|
||||
self.mask_raw_trim = 255 - np.maximum(self.mask_raw_fg, self.mask_raw_bg)
|
||||
self.mask_raw_error = (self.mask_raw_user_input > self.mask_raw_fg).astype(np.uint8) * 255
|
||||
|
||||
# log all images
|
||||
# imsave(self.mask_raw_user_input, 'mask_raw_user_input.png')
|
||||
# imsave(self.mask_raw_soft, 'mask_raw_soft.png')
|
||||
# imsave(self.mask_raw_fg, 'mask_raw_fg.png')
|
||||
# imsave(self.mask_raw_bg, 'mask_raw_bg.png')
|
||||
# imsave(self.mask_raw_trim, 'mask_raw_trim.png')
|
||||
# imsave(self.mask_raw_error, 'mask_raw_error.png')
|
||||
|
||||
# compute abcd
|
||||
a, b, c, d = compute_initial_abcd(self.mask_raw_bg < 127)
|
||||
a, b, c, d = solve_abcd(self.mask_raw_bg, a, b, c, d, k=0.618, outpaint=is_outpaint)
|
||||
|
||||
# interested area
|
||||
self.interested_area = (a, b, c, d)
|
||||
self.mask_interested_soft = self.mask_raw_soft[a:b, c:d]
|
||||
self.mask_interested_fg = self.mask_raw_fg[a:b, c:d]
|
||||
self.mask_interested_bg = self.mask_raw_bg[a:b, c:d]
|
||||
self.mask_interested_trim = self.mask_raw_trim[a:b, c:d]
|
||||
self.image_interested = self.image_raw[a:b, c:d]
|
||||
|
||||
# resize to make images ready for diffusion
|
||||
H, W, C = self.image_interested.shape
|
||||
k = (1024.0 ** 2.0 / float(H * W)) ** 0.5
|
||||
H = int(np.ceil(float(H) * k / 16.0)) * 16
|
||||
W = int(np.ceil(float(W) * k / 16.0)) * 16
|
||||
self.image_ready = resample_image(self.image_interested, W, H)
|
||||
self.mask_ready = resample_image(self.mask_interested_soft, W, H)
|
||||
|
||||
# ending
|
||||
self.latent = None
|
||||
self.latent_mask = None
|
||||
self.uc_guidance = None
|
||||
return
|
||||
|
||||
def load_latent(self, latent, mask):
|
||||
self.latent = latent
|
||||
self.latent_mask = mask
|
||||
|
||||
def color_correction(self, img):
|
||||
fg = img.astype(np.float32)
|
||||
bg = self.image_raw.copy().astype(np.float32)
|
||||
w = self.mask_raw_soft[:, :, None].astype(np.float32) / 255.0
|
||||
y = fg * w + bg * (1 - w)
|
||||
return y.clip(0, 255).astype(np.uint8)
|
||||
|
||||
def post_process(self, img):
|
||||
a, b, c, d = self.interested_area
|
||||
content = resample_image(img, d - c, b - a)
|
||||
result = self.image_raw.copy()
|
||||
result[a:b, c:d] = content
|
||||
result = self.color_correction(result)
|
||||
return result
|
||||
|
||||
def visualize_mask_processing(self):
|
||||
result = self.image_raw // 4
|
||||
a, b, c, d = self.interested_area
|
||||
result[a:b, c:d] += 64
|
||||
result[self.mask_raw_trim > 127] += 64
|
||||
result[self.mask_raw_fg > 127] += 128
|
||||
return [result, self.mask_raw_soft, self.image_ready, self.mask_ready]
|
||||
|
||||
118
modules/patch.py
118
modules/patch.py
|
|
@ -6,15 +6,20 @@ import comfy.k_diffusion.external
|
|||
import comfy.model_management
|
||||
import modules.anisotropic as anisotropic
|
||||
import comfy.ldm.modules.attention
|
||||
import comfy.k_diffusion.sampling
|
||||
import comfy.sd1_clip
|
||||
import modules.inpaint_worker as inpaint_worker
|
||||
|
||||
from comfy.k_diffusion import utils
|
||||
from comfy.k_diffusion.sampling import BrownianTreeNoiseSampler, trange
|
||||
|
||||
|
||||
sharpness = 2.0
|
||||
negative_adm = True
|
||||
|
||||
cfg_x0 = 0.0
|
||||
cfg_s = 1.0
|
||||
cfg_cin = 1.0
|
||||
|
||||
|
||||
def cfg_patched(args):
|
||||
|
|
@ -37,14 +42,29 @@ def cfg_patched(args):
|
|||
|
||||
|
||||
def patched_discrete_eps_ddpm_denoiser_forward(self, input, sigma, **kwargs):
|
||||
global cfg_x0, cfg_s
|
||||
global cfg_x0, cfg_s, cfg_cin
|
||||
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||||
cfg_x0 = input
|
||||
cfg_s = c_out
|
||||
cfg_cin = c_in
|
||||
return self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
|
||||
|
||||
|
||||
def patched_model_function(func, args):
|
||||
global cfg_cin
|
||||
x = args['input']
|
||||
t = args['timestep']
|
||||
c = args['c']
|
||||
is_uncond = torch.tensor(args['cond_or_uncond'])[:, None, None, None].to(x) * 5e-3
|
||||
if inpaint_worker.current_task is not None:
|
||||
p = inpaint_worker.current_task.uc_guidance * cfg_cin
|
||||
x = p * is_uncond + x * (1 - is_uncond ** 2.0) ** 0.5
|
||||
return func(x, t, **c)
|
||||
|
||||
|
||||
def sdxl_encode_adm_patched(self, **kwargs):
|
||||
global negative_adm
|
||||
|
||||
clip_pooled = kwargs["pooled_output"]
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
|
|
@ -53,6 +73,7 @@ def sdxl_encode_adm_patched(self, **kwargs):
|
|||
target_width = kwargs.get("target_width", width)
|
||||
target_height = kwargs.get("target_height", height)
|
||||
|
||||
if negative_adm:
|
||||
if kwargs.get("prompt_type", "") == "negative":
|
||||
width *= 0.8
|
||||
height *= 0.8
|
||||
|
|
@ -71,35 +92,6 @@ def sdxl_encode_adm_patched(self, **kwargs):
|
|||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
|
||||
def sdxl_refiner_encode_adm_patched(self, **kwargs):
|
||||
clip_pooled = kwargs["pooled_output"]
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
crop_h = kwargs.get("crop_h", 0)
|
||||
|
||||
if kwargs.get("prompt_type", "") == "negative":
|
||||
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
|
||||
else:
|
||||
aesthetic_score = kwargs.get("aesthetic_score", 7.0)
|
||||
|
||||
if kwargs.get("prompt_type", "") == "negative":
|
||||
width *= 0.8
|
||||
height *= 0.8
|
||||
elif kwargs.get("prompt_type", "") == "positive":
|
||||
width *= 1.5
|
||||
height *= 1.5
|
||||
|
||||
out = []
|
||||
out.append(self.embedder(torch.Tensor([height])))
|
||||
out.append(self.embedder(torch.Tensor([width])))
|
||||
out.append(self.embedder(torch.Tensor([crop_h])))
|
||||
out.append(self.embedder(torch.Tensor([crop_w])))
|
||||
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
||||
flat = torch.flatten(torch.cat(out))[None,]
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
|
||||
def text_encoder_device_patched():
|
||||
# Fooocus's style system uses text encoder much more times than comfy so this makes things much faster.
|
||||
return comfy.model_management.get_torch_device()
|
||||
|
|
@ -138,15 +130,79 @@ def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs):
|
|||
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_dpmpp_fooocus_2m_sde_inpaint_seamless(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, **kwargs):
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
|
||||
seed = extra_args.get("seed", None)
|
||||
assert isinstance(seed, int)
|
||||
|
||||
energy_generator = torch.Generator(device='cpu')
|
||||
energy_generator.manual_seed(seed + 1) # avoid bad results by using different seeds.
|
||||
|
||||
def get_energy():
|
||||
return torch.randn(x.size(), dtype=x.dtype, generator=energy_generator, device="cpu").to(x)
|
||||
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
old_denoised, h_last, h = None, None, None
|
||||
|
||||
latent_processor = model.inner_model.inner_model.inner_model.process_latent_in
|
||||
inpaint_latent = None
|
||||
inpaint_mask = None
|
||||
|
||||
if inpaint_worker.current_task is not None:
|
||||
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
|
||||
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
|
||||
|
||||
def blend_latent(a, b, w):
|
||||
return a * w + b * (1 - w)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
if inpaint_latent is None:
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
else:
|
||||
inpaint_worker.current_task.uc_guidance = x.detach().clone()
|
||||
energy = get_energy() * sigmas[i] + inpaint_latent
|
||||
x_prime = blend_latent(x, energy, inpaint_mask)
|
||||
denoised = model(x_prime, sigmas[i] * s_in, **extra_args)
|
||||
denoised = blend_latent(denoised, inpaint_latent, inpaint_mask)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
else:
|
||||
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
||||
h = s - t
|
||||
eta_h = eta * h
|
||||
|
||||
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
||||
if old_denoised is not None:
|
||||
r = h_last / h
|
||||
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
||||
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (
|
||||
-2 * eta_h).expm1().neg().sqrt() * s_noise
|
||||
|
||||
old_denoised = denoised
|
||||
h_last = h
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def patch_all():
|
||||
comfy.ldm.modules.attention.print = lambda x: None
|
||||
comfy.k_diffusion.sampling.sample_dpmpp_fooocus_2m_sde_inpaint_seamless = sample_dpmpp_fooocus_2m_sde_inpaint_seamless
|
||||
|
||||
comfy.model_management.text_encoder_device = text_encoder_device_patched
|
||||
print(f'Fooocus Text Processing Pipelines are retargeted to {str(comfy.model_management.text_encoder_device())}')
|
||||
|
||||
comfy.k_diffusion.external.DiscreteEpsDDPMDenoiser.forward = patched_discrete_eps_ddpm_denoiser_forward
|
||||
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
|
||||
# comfy.model_base.SDXLRefiner.encode_adm = sdxl_refiner_encode_adm_patched
|
||||
|
||||
comfy.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method
|
||||
return
|
||||
|
|
|
|||
|
|
@ -4,11 +4,209 @@ import comfy.model_management
|
|||
import modules.virtual_memory
|
||||
|
||||
|
||||
class KSamplerBasic:
|
||||
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
||||
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2", "dpmpp_fooocus_2m_sde_inpaint_seamless"]
|
||||
|
||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||
self.model = model
|
||||
self.model_denoise = CFGNoisePredictor(self.model)
|
||||
if self.model.model_type == model_base.ModelType.V_PREDICTION:
|
||||
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
|
||||
else:
|
||||
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
|
||||
|
||||
self.model_k = KSamplerX0Inpaint(self.model_wrap)
|
||||
self.device = device
|
||||
if scheduler not in self.SCHEDULERS:
|
||||
scheduler = self.SCHEDULERS[0]
|
||||
if sampler not in self.SAMPLERS:
|
||||
sampler = self.SAMPLERS[0]
|
||||
self.scheduler = scheduler
|
||||
self.sampler = sampler
|
||||
self.sigma_min=float(self.model_wrap.sigma_min)
|
||||
self.sigma_max=float(self.model_wrap.sigma_max)
|
||||
self.set_steps(steps, denoise)
|
||||
self.denoise = denoise
|
||||
self.model_options = model_options
|
||||
|
||||
def calculate_sigmas(self, steps):
|
||||
sigmas = None
|
||||
|
||||
discard_penultimate_sigma = False
|
||||
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
|
||||
steps += 1
|
||||
discard_penultimate_sigma = True
|
||||
|
||||
if self.scheduler == "karras":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
||||
elif self.scheduler == "exponential":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
||||
elif self.scheduler == "normal":
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
elif self.scheduler == "simple":
|
||||
sigmas = simple_scheduler(self.model_wrap, steps)
|
||||
elif self.scheduler == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(self.model_wrap, steps)
|
||||
else:
|
||||
print("error invalid scheduler", self.scheduler)
|
||||
|
||||
if discard_penultimate_sigma:
|
||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||
return sigmas
|
||||
|
||||
def set_steps(self, steps, denoise=None):
|
||||
self.steps = steps
|
||||
if denoise is None or denoise > 0.9999:
|
||||
self.sigmas = self.calculate_sigmas(steps).to(self.device)
|
||||
else:
|
||||
new_steps = int(steps/denoise)
|
||||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas is None:
|
||||
sigmas = self.sigmas
|
||||
sigma_min = self.sigma_min
|
||||
|
||||
if last_step is not None and last_step < (len(sigmas) - 1):
|
||||
sigma_min = sigmas[last_step]
|
||||
sigmas = sigmas[:last_step + 1]
|
||||
if force_full_denoise:
|
||||
sigmas[-1] = 0
|
||||
|
||||
if start_step is not None:
|
||||
if start_step < (len(sigmas) - 1):
|
||||
sigmas = sigmas[start_step:]
|
||||
else:
|
||||
if latent_image is not None:
|
||||
return latent_image
|
||||
else:
|
||||
return torch.zeros_like(noise)
|
||||
|
||||
positive = positive[:]
|
||||
negative = negative[:]
|
||||
|
||||
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
|
||||
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
|
||||
|
||||
calculate_start_end_timesteps(self.model_wrap, negative)
|
||||
calculate_start_end_timesteps(self.model_wrap, positive)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for c in positive:
|
||||
create_cond_with_same_area_if_none(negative, c)
|
||||
for c in negative:
|
||||
create_cond_with_same_area_if_none(positive, c)
|
||||
|
||||
pre_run_control(self.model_wrap, negative + positive)
|
||||
|
||||
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
|
||||
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
|
||||
|
||||
if self.model.is_adm():
|
||||
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
|
||||
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
|
||||
|
||||
if latent_image is not None:
|
||||
latent_image = self.model.process_latent_in(latent_image)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
|
||||
|
||||
cond_concat = None
|
||||
if hasattr(self.model, 'concat_keys'): #inpaint
|
||||
cond_concat = []
|
||||
for ck in self.model.concat_keys:
|
||||
if denoise_mask is not None:
|
||||
if ck == "mask":
|
||||
cond_concat.append(denoise_mask[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
|
||||
else:
|
||||
if ck == "mask":
|
||||
cond_concat.append(torch.ones_like(noise)[:,:1])
|
||||
elif ck == "masked_image":
|
||||
cond_concat.append(blank_inpaint_image_like(noise))
|
||||
extra_args["cond_concat"] = cond_concat
|
||||
|
||||
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
|
||||
max_denoise = False
|
||||
else:
|
||||
max_denoise = True
|
||||
|
||||
|
||||
if self.sampler == "uni_pc":
|
||||
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
|
||||
elif self.sampler == "uni_pc_bh2":
|
||||
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
|
||||
elif self.sampler == "ddim":
|
||||
timesteps = []
|
||||
for s in range(sigmas.shape[0]):
|
||||
timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s]))
|
||||
noise_mask = None
|
||||
if denoise_mask is not None:
|
||||
noise_mask = 1.0 - denoise_mask
|
||||
|
||||
ddim_callback = None
|
||||
if callback is not None:
|
||||
total_steps = len(timesteps) - 1
|
||||
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
|
||||
|
||||
sampler = DDIMSampler(self.model, device=self.device)
|
||||
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
|
||||
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
|
||||
samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
|
||||
conditioning=positive,
|
||||
batch_size=noise.shape[0],
|
||||
shape=noise.shape[1:],
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg,
|
||||
unconditional_conditioning=negative,
|
||||
eta=0.0,
|
||||
x_T=z_enc,
|
||||
x0=latent_image,
|
||||
img_callback=ddim_callback,
|
||||
denoise_function=self.model_wrap.predict_eps_discrete_timestep,
|
||||
extra_args=extra_args,
|
||||
mask=noise_mask,
|
||||
to_zero=sigmas[-1]==0,
|
||||
end_step=sigmas.shape[0] - 1,
|
||||
disable_pbar=disable_pbar)
|
||||
|
||||
else:
|
||||
extra_args["denoise_mask"] = denoise_mask
|
||||
self.model_k.latent_image = latent_image
|
||||
self.model_k.noise = noise
|
||||
|
||||
if max_denoise:
|
||||
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
||||
else:
|
||||
noise = noise * sigmas[0]
|
||||
|
||||
k_callback = None
|
||||
total_steps = len(sigmas) - 1
|
||||
if callback is not None:
|
||||
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
|
||||
|
||||
if latent_image is not None:
|
||||
noise += latent_image
|
||||
if self.sampler == "dpm_fast":
|
||||
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||
elif self.sampler == "dpm_adaptive":
|
||||
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||
else:
|
||||
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||
|
||||
return self.model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
|
||||
class KSamplerWithRefiner:
|
||||
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
||||
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2", "dpmpp_fooocus_2m_sde_inpaint_seamless"]
|
||||
|
||||
def __init__(self, model, refiner_model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||
self.model_patcher = model
|
||||
|
|
|
|||
|
|
@ -28,6 +28,12 @@ def image_is_generated_in_current_ui(image, ui_width, ui_height):
|
|||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||
|
||||
|
||||
def resample_image(im, width, height):
|
||||
im = Image.fromarray(im)
|
||||
im = im.resize((width, height), resample=LANCZOS)
|
||||
return np.array(im)
|
||||
|
||||
|
||||
def resize_image(im, width, height, resize_mode=1):
|
||||
"""
|
||||
Resizes an image with the specified resize_mode, width, and height.
|
||||
|
|
|
|||
26
webui.py
26
webui.py
|
|
@ -61,14 +61,31 @@ with shared.gradio_root:
|
|||
input_image_checkbox = gr.Checkbox(label='Input Image', value=False, container=False, elem_classes='min_check')
|
||||
advanced_checkbox = gr.Checkbox(label='Advanced', value=False, container=False, elem_classes='min_check')
|
||||
with gr.Row(visible=False) as image_input_panel:
|
||||
with gr.Column(scale=0.5):
|
||||
with gr.Accordion(label='Upscale or Variation', open=True):
|
||||
with gr.Tabs():
|
||||
with gr.TabItem(label='Upscale or Variation') as uov_tab:
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
uov_input_image = gr.Image(label='Drag above image to here', source='upload', type='numpy')
|
||||
uov_method = gr.Radio(label='Method', choices=flags.uov_list, value=flags.disabled, show_label=False, container=False)
|
||||
with gr.Column():
|
||||
uov_method = gr.Radio(label='Upscale or Variation:', choices=flags.uov_list, value=flags.disabled)
|
||||
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/390">\U0001F4D4 Document</a>')
|
||||
with gr.TabItem(label='Inpaint or Outpaint') as inpaint_tab:
|
||||
inpaint_input_image = gr.Image(label='Drag above image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF")
|
||||
gr.HTML('Outpaint Expansion (<a href="https://github.com/lllyasviel/Fooocus/discussions/414">\U0001F4D4 Document</a>):')
|
||||
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint', show_label=False, container=False)
|
||||
gr.HTML('* \"Inpaint or Outpaint\" is powered by the sampler \"DPMPP Fooocus Seamless 2M SDE Karras Inpaint Sampler\" (beta)')
|
||||
|
||||
input_image_checkbox.change(lambda x: gr.update(visible=x), inputs=input_image_checkbox, outputs=image_input_panel, queue=False,
|
||||
_js="(x) => {if(x){setTimeout(() => window.scrollTo({ top: window.scrollY + 500, behavior: 'smooth' }), 50);}else{setTimeout(() => window.scrollTo({ top: 0, behavior: 'smooth' }), 50);} return x}")
|
||||
|
||||
current_tab = gr.Textbox(value='uov', visible=False)
|
||||
uov_tab.select(lambda: 'uov', outputs=current_tab, queue=False)
|
||||
inpaint_tab.select(lambda: 'inpaint', outputs=current_tab, queue=False)
|
||||
|
||||
uov_input_image.upload(lambda x: x, inputs=[uov_input_image], outputs=[inpaint_input_image])
|
||||
inpaint_input_image.upload(lambda: None).\
|
||||
then(lambda x: x['image'], inputs=[inpaint_input_image], outputs=[uov_input_image])
|
||||
|
||||
# def get_select_index(g, evt: gr.SelectData):
|
||||
# return g[evt.index]['name']
|
||||
# gallery.select(get_select_index, gallery, uov_input_image)
|
||||
|
|
@ -132,8 +149,9 @@ with shared.gradio_root:
|
|||
performance_selction, aspect_ratios_selction, image_number, image_seed, sharpness
|
||||
]
|
||||
ctrls += [base_model, refiner_model] + lora_ctrls
|
||||
ctrls += [input_image_checkbox]
|
||||
ctrls += [input_image_checkbox, current_tab]
|
||||
ctrls += [uov_method, uov_input_image]
|
||||
ctrls += [outpaint_selections, inpaint_input_image]
|
||||
|
||||
run_button.click(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=False), []), outputs=[stop_button, run_button, gallery])\
|
||||
.then(fn=refresh_seed, inputs=[seed_random, image_seed], outputs=image_seed)\
|
||||
|
|
|
|||
Loading…
Reference in New Issue