Merge branch 'main_upstream' into feature/update-anime-preset

This commit is contained in:
Manuel Schmid 2024-06-30 14:32:57 +02:00
commit 8e13eae7ec
No known key found for this signature in database
GPG Key ID: 32C4F7569B40B84B
57 changed files with 2086 additions and 387 deletions

View File

@ -1 +1,54 @@
.idea
__pycache__
*.ckpt
*.safetensors
*.pth
*.pt
*.bin
*.patch
*.backup
*.corrupted
*.partial
*.onnx
sorted_styles.json
/input
/cache
/language/default.json
/test_imgs
config.txt
config_modification_tutorial.txt
user_path_config.txt
user_path_config-deprecated.txt
/modules/*.png
/repositories
/fooocus_env
/venv
/tmp
/ui-config.json
/outputs
/config.json
/log
/webui.settings.bat
/embeddings
/styles.csv
/params.txt
/styles.csv.bak
/webui-user.bat
/webui-user.sh
/interrogate
/user.css
/.idea
/notification.ogg
/notification.mp3
/SwinIR
/textual_inversion
.vscode
/extensions
/test/stdout.txt
/test/stderr.txt
/cache.json*
/config_states/
/node_modules
/package-lock.json
/.coverage*
/auth.json
.DS_Store

3
.gitattributes vendored Normal file
View File

@ -0,0 +1,3 @@
# Ensure that shell scripts always use lf line endings, e.g. entrypoint.sh for docker
* text=auto
*.sh text eol=lf

2
.github/CODEOWNERS vendored
View File

@ -1 +1 @@
* @lllyasviel
* @mashb1t

6
.github/dependabot.yml vendored Normal file
View File

@ -0,0 +1,6 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "monthly"

47
.github/workflows/build_container.yml vendored Normal file
View File

@ -0,0 +1,47 @@
name: Docker image build
on:
push:
branches:
- main
tags:
- v*
jobs:
build-and-push-image:
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to the Container registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v5
with:
images: ghcr.io/${{ github.repository_owner }}/${{ github.event.repository.name }}
tags: |
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
type=edge,branch=main
- name: Build and push Docker image
uses: docker/build-push-action@v5
with:
context: .
file: ./Dockerfile
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.3.1-base-ubuntu22.04
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
ENV DEBIAN_FRONTEND noninteractive
ENV CMDARGS --listen
@ -23,7 +23,7 @@ RUN chown -R user:user /content
WORKDIR /content
USER user
RUN git clone https://github.com/lllyasviel/Fooocus /content/app
COPY --chown=user:user . /content/app
RUN mv /content/app/models /content/app/models.org
CMD [ "sh", "-c", "/content/entrypoint.sh ${CMDARGS}" ]

View File

@ -1,7 +1,4 @@
import ldm_patched.modules.args_parser as args_parser
import os
from tempfile import gettempdir
args_parser.parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
@ -31,6 +28,9 @@ args_parser.parser.add_argument("--disable-metadata", action='store_true',
args_parser.parser.add_argument("--disable-preset-download", action='store_true',
help="Disables downloading models for presets", default=False)
args_parser.parser.add_argument("--enable-describe-uov-image", action='store_true',
help="Disables automatic description of uov images when prompt is empty", default=False)
args_parser.parser.add_argument("--always-download-new-model", action='store_true',
help="Always download newer models ", default=False)

View File

@ -27,6 +27,7 @@ progress {
border-radius: 5px; /* Round the corners of the progress bar */
background-color: #f3f3f3; /* Light grey background */
width: 100%;
vertical-align: middle !important;
}
/* Style the progress bar container */
@ -69,30 +70,39 @@ progress::after {
height: 30px !important;
}
.type_row{
height: 80px !important;
.progress-bar span {
text-align: right;
width: 215px;
}
div:has(> #positive_prompt) {
border: none;
}
.type_row_half{
height: 32px !important;
#positive_prompt {
padding: 1px;
background: var(--background-fill-primary);
}
.scroll-hide{
resize: none !important;
.type_row {
height: 84px !important;
}
.refresh_button{
.type_row_half {
height: 34px !important;
}
.refresh_button {
border: none !important;
background: none !important;
font-size: none !important;
box-shadow: none !important;
}
.advanced_check_row{
.advanced_check_row {
width: 250px !important;
}
.min_check{
.min_check {
min-width: min(1px, 100%) !important;
}
@ -101,10 +111,14 @@ progress::after {
overflow: auto !important;
}
.aspect_ratios label {
.performance_selection label {
width: 140px !important;
}
.aspect_ratios label {
flex: calc(50% - 5px) !important;
}
.aspect_ratios label span {
white-space: nowrap !important;
}
@ -391,6 +405,14 @@ progress::after {
background-color: #fff8;
font-family: monospace;
text-align: center;
border-radius-top: 5px;
border-radius: 5px 5px 0px 0px;
display: none; /* remove this to enable tooltip in preview image */
}
#inpaint_canvas .canvas-tooltip-info {
top: 2px;
}
#inpaint_brush_color input[type=color]{
background: none;
}

11
development.md Normal file
View File

@ -0,0 +1,11 @@
## Running unit tests
Native python:
```
python -m unittest tests/
```
Embedded python (Windows zip file installation method):
```
..\python_embeded\python.exe -m unittest
```

View File

@ -1,12 +1,10 @@
version: '3.9'
volumes:
fooocus-data:
services:
app:
build: .
image: fooocus
image: ghcr.io/lllyasviel/fooocus
ports:
- "7865:7865"
environment:

View File

@ -1,35 +1,99 @@
# Fooocus on Docker
The docker image is based on NVIDIA CUDA 12.3 and PyTorch 2.0, see [Dockerfile](Dockerfile) and [requirements_docker.txt](requirements_docker.txt) for details.
The docker image is based on NVIDIA CUDA 12.4 and PyTorch 2.1, see [Dockerfile](Dockerfile) and [requirements_docker.txt](requirements_docker.txt) for details.
## Requirements
- A computer with specs good enough to run Fooocus, and proprietary Nvidia drivers
- Docker, Docker Compose, or Podman
## Quick start
**This is just an easy way for testing. Please find more information in the [notes](#notes).**
**More information in the [notes](#notes).**
### Running with Docker Compose
1. Clone this repository
2. Build the image with `docker compose build`
3. Run the docker container with `docker compose up`. Building the image takes some time.
2. Run the docker container with `docker compose up`.
### Running with Docker
```sh
docker run -p 7865:7865 -v fooocus-data:/content/data -it \
--gpus all \
-e CMDARGS=--listen \
-e DATADIR=/content/data \
-e config_path=/content/data/config.txt \
-e config_example_path=/content/data/config_modification_tutorial.txt \
-e path_checkpoints=/content/data/models/checkpoints/ \
-e path_loras=/content/data/models/loras/ \
-e path_embeddings=/content/data/models/embeddings/ \
-e path_vae_approx=/content/data/models/vae_approx/ \
-e path_upscale_models=/content/data/models/upscale_models/ \
-e path_inpaint=/content/data/models/inpaint/ \
-e path_controlnet=/content/data/models/controlnet/ \
-e path_clip_vision=/content/data/models/clip_vision/ \
-e path_fooocus_expansion=/content/data/models/prompt_expansion/fooocus_expansion/ \
-e path_outputs=/content/app/outputs/ \
ghcr.io/lllyasviel/fooocus
```
### Running with Podman
```sh
podman run -p 7865:7865 -v fooocus-data:/content/data -it \
--security-opt=no-new-privileges --cap-drop=ALL --security-opt label=type:nvidia_container_t --device=nvidia.com/gpu=all \
-e CMDARGS=--listen \
-e DATADIR=/content/data \
-e config_path=/content/data/config.txt \
-e config_example_path=/content/data/config_modification_tutorial.txt \
-e path_checkpoints=/content/data/models/checkpoints/ \
-e path_loras=/content/data/models/loras/ \
-e path_embeddings=/content/data/models/embeddings/ \
-e path_vae_approx=/content/data/models/vae_approx/ \
-e path_upscale_models=/content/data/models/upscale_models/ \
-e path_inpaint=/content/data/models/inpaint/ \
-e path_controlnet=/content/data/models/controlnet/ \
-e path_clip_vision=/content/data/models/clip_vision/ \
-e path_fooocus_expansion=/content/data/models/prompt_expansion/fooocus_expansion/ \
-e path_outputs=/content/app/outputs/ \
ghcr.io/lllyasviel/fooocus
```
When you see the message `Use the app with http://0.0.0.0:7865/` in the console, you can access the URL in your browser.
Your models and outputs are stored in the `fooocus-data` volume, which, depending on OS, is stored in `/var/lib/docker/volumes`.
Your models and outputs are stored in the `fooocus-data` volume, which, depending on OS, is stored in `/var/lib/docker/volumes/` (or `~/.local/share/containers/storage/volumes/` when using `podman`).
## Building the container locally
Clone the repository first, and open a terminal in the folder.
Build with `docker`:
```sh
docker build . -t fooocus
```
Build with `podman`:
```sh
podman build . -t fooocus
```
## Details
### Update the container manually
### Update the container manually (`docker compose`)
When you are using `docker compose up` continuously, the container is not updated to the latest version of Fooocus automatically.
Run `git pull` before executing `docker compose build --no-cache` to build an image with the latest Fooocus version.
You can then start it with `docker compose up`
### Import models, outputs
If you want to import files from models or the outputs folder, you can uncomment the following settings in the [docker-compose.yml](docker-compose.yml):
If you want to import files from models or the outputs folder, you can add the following bind mounts in the [docker-compose.yml](docker-compose.yml) or your preferred method of running the container:
```
#- ./models:/import/models # Once you import files, you don't need to mount again.
#- ./outputs:/import/outputs # Once you import files, you don't need to mount again.
```
After running `docker compose up`, your files will be copied into `/content/data/models` and `/content/data/outputs`
Since `/content/data` is a persistent volume folder, your files will be persisted even when you re-run `docker compose up --build` without above volume settings.
After running the container, your files will be copied into `/content/data/models` and `/content/data/outputs`
Since `/content/data` is a persistent volume folder, your files will be persisted even when you re-run the container without the above mounts.
### Paths inside the container
@ -54,6 +118,7 @@ Docker specified environments are there. They are used by 'entrypoint.sh'
|CMDARGS|Arguments for [entry_with_update.py](entry_with_update.py) which is called by [entrypoint.sh](entrypoint.sh)|
|config_path|'config.txt' location|
|config_example_path|'config_modification_tutorial.txt' location|
|HF_MIRROR| huggingface mirror site domain|
You can also use the same json key names and values explained in the 'config_modification_tutorial.txt' as the environments.
See examples in the [docker-compose.yml](docker-compose.yml)

60
extras/censor.py Normal file
View File

@ -0,0 +1,60 @@
import os
import numpy as np
import torch
from transformers import CLIPConfig, CLIPImageProcessor
import ldm_patched.modules.model_management as model_management
import modules.config
from extras.safety_checker.models.safety_checker import StableDiffusionSafetyChecker
from ldm_patched.modules.model_patcher import ModelPatcher
safety_checker_repo_root = os.path.join(os.path.dirname(__file__), 'safety_checker')
config_path = os.path.join(safety_checker_repo_root, "configs", "config.json")
preprocessor_config_path = os.path.join(safety_checker_repo_root, "configs", "preprocessor_config.json")
class Censor:
def __init__(self):
self.safety_checker_model: ModelPatcher | None = None
self.clip_image_processor: CLIPImageProcessor | None = None
self.load_device = torch.device('cpu')
self.offload_device = torch.device('cpu')
def init(self):
if self.safety_checker_model is None and self.clip_image_processor is None:
safety_checker_model = modules.config.downloading_safety_checker_model()
self.clip_image_processor = CLIPImageProcessor.from_json_file(preprocessor_config_path)
clip_config = CLIPConfig.from_json_file(config_path)
model = StableDiffusionSafetyChecker.from_pretrained(safety_checker_model, config=clip_config)
model.eval()
self.load_device = model_management.text_encoder_device()
self.offload_device = model_management.text_encoder_offload_device()
model.to(self.offload_device)
self.safety_checker_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device)
def censor(self, images: list | np.ndarray) -> list | np.ndarray:
self.init()
model_management.load_model_gpu(self.safety_checker_model)
single = False
if not isinstance(images, list) or isinstance(images, np.ndarray):
images = [images]
single = True
safety_checker_input = self.clip_image_processor(images, return_tensors="pt")
safety_checker_input.to(device=self.load_device)
checked_images, has_nsfw_concept = self.safety_checker_model.model(images=images,
clip_input=safety_checker_input.pixel_values)
checked_images = [image.astype(np.uint8) for image in checked_images]
if single:
checked_images = checked_images[0]
return checked_images
default_censor = Censor().censor

View File

@ -0,0 +1,171 @@
{
"_name_or_path": "clip-vit-large-patch14/",
"architectures": [
"SafetyChecker"
],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
"text_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 1,
"prefix": null,
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.21.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false,
"vocab_size": 49408
},
"text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12
},
"torch_dtype": "float32",
"transformers_version": null,
"vision_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"min_length": 0,
"model_type": "clip_vision_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 16,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 24,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": null,
"patch_size": 14,
"prefix": null,
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.21.0.dev0",
"typical_p": 1.0,
"use_bfloat16": false
},
"vision_config_dict": {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14
}
}

View File

@ -0,0 +1,20 @@
{
"crop_size": 224,
"do_center_crop": true,
"do_convert_rgb": true,
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "CLIPFeatureExtractor",
"image_mean": [
0.48145466,
0.4578275,
0.40821073
],
"image_std": [
0.26862954,
0.26130258,
0.27577711
],
"resample": 3,
"size": 224
}

View File

@ -0,0 +1,126 @@
# from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
def cosine_distance(image_embeds, text_embeds):
normalized_image_embeds = nn.functional.normalize(image_embeds)
normalized_text_embeds = nn.functional.normalize(text_embeds)
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
class StableDiffusionSafetyChecker(PreTrainedModel):
config_class = CLIPConfig
main_input_name = "clip_input"
_no_split_modules = ["CLIPEncoderLayer"]
def __init__(self, config: CLIPConfig):
super().__init__(config)
self.vision_model = CLIPVisionModel(config.vision_config)
self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)
self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False)
@torch.no_grad()
def forward(self, clip_input, images):
pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
result = []
batch_size = image_embeds.shape[0]
for i in range(batch_size):
result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0
for concept_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concept_idx]
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
adjustment = 0.01
for concept_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concept_idx]
concept_threshold = self.concept_embeds_weights[concept_idx].item()
result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(concept_idx)
result.append(result_img)
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if torch.is_tensor(images) or torch.is_tensor(images[0]):
images[idx] = torch.zeros_like(images[idx]) # black image
else:
images[idx] = np.zeros(images[idx].shape) # black image
if any(has_nsfw_concepts):
logger.warning(
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
" Try again with a different prompt and/or seed."
)
return images, has_nsfw_concepts
@torch.no_grad()
def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor):
pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output)
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0
special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
special_care = torch.any(special_scores > 0, dim=1)
special_adjustment = special_care * 0.01
special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1])
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
images[has_nsfw_concepts] = 0.0 # black image
return images, has_nsfw_concepts

View File

@ -1,69 +1,85 @@
# https://github.com/city96/SD-Latent-Interposer/blob/main/interposer.py
import os
import torch
import safetensors.torch as sf
import torch.nn as nn
import ldm_patched.modules.model_management
import safetensors.torch as sf
import torch
import torch.nn as nn
import ldm_patched.modules.model_management
from ldm_patched.modules.model_patcher import ModelPatcher
from modules.config import path_vae_approx
class Block(nn.Module):
def __init__(self, size):
class ResBlock(nn.Module):
"""Block with residuals"""
def __init__(self, ch):
super().__init__()
self.join = nn.ReLU()
self.norm = nn.BatchNorm2d(ch)
self.long = nn.Sequential(
nn.Conv2d(size, size, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.1),
nn.Conv2d(size, size, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.1),
nn.Conv2d(size, size, kernel_size=3, stride=1, padding=1),
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1),
nn.Dropout(0.1)
)
def forward(self, x):
y = self.long(x)
z = self.join(y + x)
return z
x = self.norm(x)
return self.join(self.long(x) + x)
class Interposer(nn.Module):
def __init__(self):
class ExtractBlock(nn.Module):
"""Increase no. of channels by [out/in]"""
def __init__(self, ch_in, ch_out):
super().__init__()
self.chan = 4
self.hid = 128
self.head_join = nn.ReLU()
self.head_short = nn.Conv2d(self.chan, self.hid, kernel_size=3, stride=1, padding=1)
self.head_long = nn.Sequential(
nn.Conv2d(self.chan, self.hid, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.1),
nn.Conv2d(self.hid, self.hid, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.1),
nn.Conv2d(self.hid, self.hid, kernel_size=3, stride=1, padding=1),
)
self.core = nn.Sequential(
Block(self.hid),
Block(self.hid),
Block(self.hid),
)
self.tail = nn.Sequential(
nn.ReLU(),
nn.Conv2d(self.hid, self.chan, kernel_size=3, stride=1, padding=1)
self.join = nn.ReLU()
self.short = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
self.long = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1),
nn.SiLU(),
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1),
nn.Dropout(0.1)
)
def forward(self, x):
y = self.head_join(
self.head_long(x) +
self.head_short(x)
return self.join(self.long(x) + self.short(x))
class InterposerModel(nn.Module):
"""Main neural network"""
def __init__(self, ch_in=4, ch_out=4, ch_mid=64, scale=1.0, blocks=12):
super().__init__()
self.ch_in = ch_in
self.ch_out = ch_out
self.ch_mid = ch_mid
self.blocks = blocks
self.scale = scale
self.head = ExtractBlock(self.ch_in, self.ch_mid)
self.core = nn.Sequential(
nn.Upsample(scale_factor=self.scale, mode="nearest"),
*[ResBlock(self.ch_mid) for _ in range(blocks)],
nn.BatchNorm2d(self.ch_mid),
nn.SiLU(),
)
self.tail = nn.Conv2d(self.ch_mid, self.ch_out, kernel_size=3, stride=1, padding=1)
def forward(self, x):
y = self.head(x)
z = self.core(y)
return self.tail(z)
vae_approx_model = None
vae_approx_filename = os.path.join(path_vae_approx, 'xl-to-v1_interposer-v3.1.safetensors')
vae_approx_filename = os.path.join(path_vae_approx, 'xl-to-v1_interposer-v4.0.safetensors')
def parse(x):
@ -72,7 +88,7 @@ def parse(x):
x_origin = x.clone()
if vae_approx_model is None:
model = Interposer()
model = InterposerModel()
model.eval()
sd = sf.load_file(vae_approx_filename)
model.load_state_dict(sd)

View File

@ -1 +1 @@
version = '2.3.1'
version = '2.4.3'

View File

@ -80,6 +80,15 @@ function refresh_style_localization() {
processNode(document.querySelector('.style_selections'));
}
function refresh_aspect_ratios_label(value) {
label = document.querySelector('#aspect_ratios_accordion div span');
translation = getTranslation("Aspect Ratios");
if (typeof translation == "undefined") {
translation = "Aspect Ratios";
}
label.textContent = translation + " " + htmlDecode(value);
}
function localizeWholePage() {
processNode(gradioApp());

View File

@ -122,6 +122,43 @@ document.addEventListener("DOMContentLoaded", function() {
initStylePreviewOverlay();
});
var onAppend = function(elem, f) {
var observer = new MutationObserver(function(mutations) {
mutations.forEach(function(m) {
if (m.addedNodes.length) {
f(m.addedNodes);
}
});
});
observer.observe(elem, {childList: true});
}
function addObserverIfDesiredNodeAvailable(querySelector, callback) {
var elem = document.querySelector(querySelector);
if (!elem) {
window.setTimeout(() => addObserverIfDesiredNodeAvailable(querySelector, callback), 1000);
return;
}
onAppend(elem, callback);
}
/**
* Show reset button on toast "Connection errored out."
*/
addObserverIfDesiredNodeAvailable(".toast-wrap", function(added) {
added.forEach(function(element) {
if (element.innerText.includes("Connection errored out.")) {
window.setTimeout(function() {
document.getElementById("reset_button").classList.remove("hidden");
document.getElementById("generate_button").classList.add("hidden");
document.getElementById("skip_button").classList.add("hidden");
document.getElementById("stop_button").classList.add("hidden");
});
}
});
});
/**
* Add a ctrl+enter as a shortcut to start a generation
*/
@ -219,3 +256,8 @@ function set_theme(theme) {
window.location.replace(gradioURL + '?__theme=' + theme);
}
}
function htmlDecode(input) {
var doc = new DOMParser().parseFromString(input, "text/html");
return doc.documentElement.textContent;
}

View File

@ -4,12 +4,20 @@
"Generate": "Generate",
"Skip": "Skip",
"Stop": "Stop",
"Reconnect": "Reconnect",
"Input Image": "Input Image",
"Advanced": "Advanced",
"Upscale or Variation": "Upscale or Variation",
"Image Prompt": "Image Prompt",
"Inpaint or Outpaint (beta)": "Inpaint or Outpaint (beta)",
"Drag above image to here": "Drag above image to here",
"Inpaint or Outpaint": "Inpaint or Outpaint",
"Outpaint Direction": "Outpaint Direction",
"Method": "Method",
"Describe": "Describe",
"Content Type": "Content Type",
"Photograph": "Photograph",
"Art/Anime": "Art/Anime",
"Describe this Image into Prompt": "Describe this Image into Prompt",
"Image Size and Recommended Size": "Image Size and Recommended Size",
"Upscale or Variation:": "Upscale or Variation:",
"Disabled": "Disabled",
"Vary (Subtle)": "Vary (Subtle)",
@ -54,9 +62,12 @@
"Disable seed increment": "Disable seed increment",
"Disable automatic seed increment when image number is > 1.": "Disable automatic seed increment when image number is > 1.",
"Read wildcards in order": "Read wildcards in order",
"Black Out NSFW": "Black Out NSFW",
"Use black image if NSFW is detected.": "Use black image if NSFW is detected.",
"\ud83d\udcda History Log": "\uD83D\uDCDA History Log",
"Image Style": "Image Style",
"Fooocus V2": "Fooocus V2",
"Random Style": "Random Style",
"Default (Slightly Cinematic)": "Default (Slightly Cinematic)",
"Fooocus Masterpiece": "Fooocus Masterpiece",
"Fooocus Photograph": "Fooocus Photograph",
@ -309,6 +320,8 @@
"vae": "vae",
"CFG Mimicking from TSNR": "CFG Mimicking from TSNR",
"Enabling Fooocus's implementation of CFG mimicking for TSNR (effective when real CFG > mimicked CFG).": "Enabling Fooocus's implementation of CFG mimicking for TSNR (effective when real CFG > mimicked CFG).",
"CLIP Skip": "CLIP Skip",
"Bypass CLIP layers to avoid overfitting (use 1 to not skip any layers, 2 is recommended).": "Bypass CLIP layers to avoid overfitting (use 1 to not skip any layers, 2 is recommended).",
"Sampler": "Sampler",
"dpmpp_2m_sde_gpu": "dpmpp_2m_sde_gpu",
"Only effective in non-inpaint mode.": "Only effective in non-inpaint mode.",
@ -339,6 +352,8 @@
"sgm_uniform": "sgm_uniform",
"simple": "simple",
"ddim_uniform": "ddim_uniform",
"VAE": "VAE",
"Default (model)": "Default (model)",
"Forced Overwrite of Sampling Step": "Forced Overwrite of Sampling Step",
"Set as -1 to disable. For developer debugging.": "Set as -1 to disable. For developer debugging.",
"Forced Overwrite of Refiner Switch Step": "Forced Overwrite of Refiner Switch Step",
@ -378,7 +393,7 @@
"Fooocus Enhance": "Fooocus Enhance",
"Fooocus Cinematic": "Fooocus Cinematic",
"Fooocus Sharp": "Fooocus Sharp",
"Drag any image generated by Fooocus here": "Drag any image generated by Fooocus here",
"For images created by Fooocus": "For images created by Fooocus",
"Metadata": "Metadata",
"Apply Metadata": "Apply Metadata",
"Metadata Scheme": "Metadata Scheme",

View File

@ -62,8 +62,8 @@ def prepare_environment():
vae_approx_filenames = [
('xlvaeapp.pth', 'https://huggingface.co/lllyasviel/misc/resolve/main/xlvaeapp.pth'),
('vaeapp_sd15.pth', 'https://huggingface.co/lllyasviel/misc/resolve/main/vaeapp_sd15.pt'),
('xl-to-v1_interposer-v3.1.safetensors',
'https://huggingface.co/lllyasviel/misc/resolve/main/xl-to-v1_interposer-v3.1.safetensors')
('xl-to-v1_interposer-v4.0.safetensors',
'https://huggingface.co/mashb1t/misc/resolve/main/xl-to-v1_interposer-v4.0.safetensors')
]
@ -80,6 +80,10 @@ if args.gpu_device_id is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_device_id)
print("Set device to:", args.gpu_device_id)
if args.hf_mirror is not None :
os.environ['HF_MIRROR'] = str(args.hf_mirror)
print("Set hf_mirror to:", args.hf_mirror)
from modules import config
os.environ['GRADIO_TEMP_DIR'] = config.temp_path

View File

@ -0,0 +1,55 @@
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
import numpy as np
import torch
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582],
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
class AlignYourStepsScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_type": (["SD1", "SDXL", "SVD"], ),
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, model_type, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
total_steps = round(steps * denoise)
sigmas = NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )
NODE_CLASS_MAPPINGS = {
"AlignYourStepsScheduler": AlignYourStepsScheduler,
}

View File

@ -107,8 +107,7 @@ class SDTurboScheduler:
def get_sigmas(self, model, steps, denoise):
start_step = 10 - int(10 * denoise)
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
ldm_patched.modules.model_management.load_models_gpu([model])
sigmas = model.model.model_sampling.sigma(timesteps)
sigmas = model.model_sampling.sigma(timesteps)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
return (sigmas, )
@ -230,6 +229,25 @@ class SamplerDPMPP_SDE:
sampler = ldm_patched.modules.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
return (sampler, )
class SamplerTCD:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"eta": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, eta=0.3):
sampler = ldm_patched.modules.samplers.ksampler("tcd", {"eta": eta})
return (sampler, )
class SamplerCustom:
@classmethod
def INPUT_TYPES(s):
@ -292,6 +310,7 @@ NODE_CLASS_MAPPINGS = {
"KSamplerSelect": KSamplerSelect,
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
"SamplerDPMPP_SDE": SamplerDPMPP_SDE,
"SamplerTCD": SamplerTCD,
"SplitSigmas": SplitSigmas,
"FlipSigmas": FlipSigmas,
}

View File

@ -70,7 +70,7 @@ class ModelSamplingDiscrete:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["eps", "v_prediction", "lcm"],),
"sampling": (["eps", "v_prediction", "lcm", "tcd"]),
"zsnr": ("BOOLEAN", {"default": False}),
}}
@ -90,6 +90,9 @@ class ModelSamplingDiscrete:
elif sampling == "lcm":
sampling_type = LCM
sampling_base = ModelSamplingDiscreteDistilled
elif sampling == "tcd":
sampling_type = ldm_patched.modules.model_sampling.EPS
sampling_base = ModelSamplingDiscreteDistilled
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
@ -105,7 +108,7 @@ class ModelSamplingContinuousEDM:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["v_prediction", "eps"],),
"sampling": (["v_prediction", "edm_playground_v2.5", "eps"],),
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
}}
@ -118,17 +121,25 @@ class ModelSamplingContinuousEDM:
def patch(self, model, sampling, sigma_max, sigma_min):
m = model.clone()
latent_format = None
sigma_data = 1.0
if sampling == "eps":
sampling_type = ldm_patched.modules.model_sampling.EPS
elif sampling == "v_prediction":
sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
elif sampling == "edm_playground_v2.5":
sampling_type = ldm_patched.modules.model_sampling.EDM
sigma_data = 0.5
latent_format = ldm_patched.modules.latent_formats.SDXL_Playground_2_5()
class ModelSamplingAdvanced(ldm_patched.modules.model_sampling.ModelSamplingContinuousEDM, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_sigma_range(sigma_min, sigma_max)
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
m.add_object_patch("model_sampling", model_sampling)
if latent_format is not None:
m.add_object_patch("latent_format", latent_format)
return (m, )
class RescaleCFG:

View File

@ -752,7 +752,6 @@ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, n
return x
@torch.no_grad()
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
@ -808,3 +807,32 @@ def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=Non
d_prime = w1 * d + w2 * d_2 + w3 * d_3
x = x + d_prime * dt
return x
@torch.no_grad()
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, eta=0.3):
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.inner_model.model_sampling
timesteps_s = torch.floor((1 - eta) * model_sampling.timestep(sigmas)).to(dtype=torch.long).detach().cpu()
timesteps_s[-1] = 0
alpha_prod_s = model_sampling.alphas_cumprod[timesteps_s]
beta_prod_s = 1 - alpha_prod_s
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) # predicted_original_sample
eps = (x - denoised) / sigmas[i]
denoised = alpha_prod_s[i + 1].sqrt() * denoised + beta_prod_s[i + 1].sqrt() * eps
if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
x = denoised
if eta > 0 and sigmas[i + 1] > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1])
x = x / alpha_prod_s[i+1].sqrt() + noise * (sigmas[i+1]**2 + 1 - 1/alpha_prod_s[i+1]).sqrt()
else:
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2)
return x

View File

@ -37,6 +37,7 @@ parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nar
parser.add_argument("--port", type=int, default=8188)
parser.add_argument("--disable-header-check", type=str, default=None, metavar="ORIGIN", nargs="?", const="*")
parser.add_argument("--web-upload-size", type=float, default=100)
parser.add_argument("--hf-mirror", type=str, default=None)
parser.add_argument("--external-working-path", type=str, default=None, metavar="PATH", nargs='+', action='append')
parser.add_argument("--output-path", type=str, default=None)

View File

@ -1,3 +1,4 @@
import torch
class LatentFormat:
scale_factor = 1.0
@ -34,6 +35,70 @@ class SDXL(LatentFormat):
]
self.taesd_decoder_name = "taesdxl_decoder"
class SDXL_Playground_2_5(LatentFormat):
def __init__(self):
self.scale_factor = 0.5
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
self.latent_rgb_factors = [
# R G B
[ 0.3920, 0.4054, 0.4549],
[-0.2634, -0.0196, 0.0653],
[ 0.0568, 0.1687, -0.0755],
[-0.3112, -0.2359, -0.2076]
]
self.taesd_decoder_name = "taesdxl_decoder"
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class SD_X4(LatentFormat):
def __init__(self):
self.scale_factor = 0.08333
self.latent_rgb_factors = [
[-0.2340, -0.3863, -0.3257],
[ 0.0994, 0.0885, -0.0908],
[-0.2833, -0.2349, -0.3741],
[ 0.2523, -0.0055, -0.1651]
]
class SC_Prior(LatentFormat):
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
[-0.0326, -0.0204, -0.0127],
[-0.1592, -0.0427, 0.0216],
[ 0.0873, 0.0638, -0.0020],
[-0.0602, 0.0442, 0.1304],
[ 0.0800, -0.0313, -0.1796],
[-0.0810, -0.0638, -0.1581],
[ 0.1791, 0.1180, 0.0967],
[ 0.0740, 0.1416, 0.0432],
[-0.1745, -0.1888, -0.1373],
[ 0.2412, 0.1577, 0.0928],
[ 0.1908, 0.0998, 0.0682],
[ 0.0209, 0.0365, -0.0092],
[ 0.0448, -0.0650, -0.1728],
[-0.1658, -0.1045, -0.1308],
[ 0.0542, 0.1545, 0.1325],
[-0.0352, -0.1672, -0.2541]
]
class SC_B(LatentFormat):
def __init__(self):
self.scale_factor = 1.0 / 0.43
self.latent_rgb_factors = [
[ 0.1121, 0.2006, 0.1023],
[-0.2093, -0.0222, -0.0195],
[-0.3087, -0.1535, 0.0366],
[ 0.0290, -0.1574, -0.4078]
]

View File

@ -1,7 +1,7 @@
import torch
import numpy as np
from ldm_patched.ldm.modules.diffusionmodules.util import make_beta_schedule
import math
import numpy as np
class EPS:
def calculate_input(self, sigma, noise):
@ -12,12 +12,28 @@ class EPS:
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
if max_denoise:
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
else:
noise = noise * sigma
noise += latent_image
return noise
def inverse_noise_scaling(self, sigma, latent):
return latent
class V_PREDICTION(EPS):
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
class EDM(V_PREDICTION):
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None):
@ -42,8 +58,7 @@ class ModelSamplingDiscrete(torch.nn.Module):
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
alphas_cumprod = torch.cumprod(alphas, dim=0)
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
@ -55,11 +70,16 @@ class ModelSamplingDiscrete(torch.nn.Module):
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
self.set_sigmas(sigmas)
self.set_alphas_cumprod(alphas_cumprod.float())
def set_sigmas(self, sigmas):
self.register_buffer('sigmas', sigmas)
self.register_buffer('log_sigmas', sigmas.log())
self.register_buffer('sigmas', sigmas.float())
self.register_buffer('log_sigmas', sigmas.log().float())
def set_alphas_cumprod(self, alphas_cumprod):
self.register_buffer("alphas_cumprod", alphas_cumprod.float())
@property
def sigma_min(self):
@ -94,8 +114,6 @@ class ModelSamplingDiscrete(torch.nn.Module):
class ModelSamplingContinuousEDM(torch.nn.Module):
def __init__(self, model_config=None):
super().__init__()
self.sigma_data = 1.0
if model_config is not None:
sampling_settings = model_config.sampling_settings
else:
@ -103,9 +121,11 @@ class ModelSamplingContinuousEDM(torch.nn.Module):
sigma_min = sampling_settings.get("sigma_min", 0.002)
sigma_max = sampling_settings.get("sigma_max", 120.0)
self.set_sigma_range(sigma_min, sigma_max)
sigma_data = sampling_settings.get("sigma_data", 1.0)
self.set_parameters(sigma_min, sigma_max, sigma_data)
def set_sigma_range(self, sigma_min, sigma_max):
def set_parameters(self, sigma_min, sigma_max, sigma_data):
self.sigma_data = sigma_data
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
@ -134,3 +154,56 @@ class ModelSamplingContinuousEDM(torch.nn.Module):
log_sigma_min = math.log(self.sigma_min)
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
class StableCascadeSampling(ModelSamplingDiscrete):
def __init__(self, model_config=None):
super().__init__()
if model_config is not None:
sampling_settings = model_config.sampling_settings
else:
sampling_settings = {}
self.set_parameters(sampling_settings.get("shift", 1.0))
def set_parameters(self, shift=1.0, cosine_s=8e-3):
self.shift = shift
self.cosine_s = torch.tensor(cosine_s)
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
#This part is just for compatibility with some schedulers in the codebase
self.num_timesteps = 10000
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
for x in range(self.num_timesteps):
t = (x + 1) / self.num_timesteps
sigmas[x] = self.sigma(t)
self.set_sigmas(sigmas)
def sigma(self, timestep):
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)
if self.shift != 1.0:
var = alpha_cumprod
logSNR = (var/(1-var)).log()
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
alpha_cumprod = logSNR.sigmoid()
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5
def timestep(self, sigma):
var = 1 / ((sigma * sigma) + 1)
var = var.clamp(0, 1.0)
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
return t
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 999999999.9
if percent >= 1.0:
return 0.0
percent = 1.0 - percent
return self.sigma(torch.tensor(percent))

View File

@ -523,7 +523,7 @@ class UNIPCBH2(Sampler):
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd", "edm_playground_v2.5"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@ -427,12 +427,13 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (ldm_patched.modules.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, vae_filename_param=None):
sd = ldm_patched.modules.utils.load_torch_file(ckpt_path)
sd_keys = sd.keys()
clip = None
clipvision = None
vae = None
vae_filename = None
model = None
model_patcher = None
clip_target = None
@ -462,8 +463,12 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
if vae_filename_param is None:
vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
else:
vae_sd = ldm_patched.modules.utils.load_torch_file(vae_filename_param)
vae_filename = vae_filename_param
vae = VAE(sd=vae_sd)
if output_clip:
@ -485,7 +490,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return (model_patcher, clip, vae, clipvision)
return model_patcher, clip, vae, vae_filename, clipvision
def load_unet_state_dict(sd): #load unet in diffusers format

0
modules/__init__.py Normal file
View File

View File

@ -4,6 +4,7 @@ from modules.patch import PatchSettings, patch_settings, patch_all
patch_all()
class AsyncTask:
def __init__(self, args):
self.args = args
@ -43,11 +44,13 @@ def worker():
import fooocus_version
import args_manager
from modules.sdxl_styles import apply_style, apply_wildcards, fooocus_expansion, apply_arrays
from extras.censor import default_censor
from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name
from modules.private_logger import log
from extras.expansion import safe_str
from modules.util import remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, \
get_shape_ceil, resample_image, erode_or_dilate, ordinal_suffix, get_enabled_loras
from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil,
get_shape_ceil, resample_image, erode_or_dilate, get_enabled_loras,
parse_lora_references_from_prompt, apply_wildcards)
from modules.upscaler import perform_upscale
from modules.flags import Performance
from modules.meta_parser import get_metadata_parser, MetadataScheme
@ -68,10 +71,15 @@ def worker():
print(f'[Fooocus] {text}')
async_task.yields.append(['preview', (number, text, None)])
def yield_result(async_task, imgs, do_not_show_finished_images=False):
def yield_result(async_task, imgs, black_out_nsfw, censor=True, do_not_show_finished_images=False,
progressbar_index=flags.preparation_step_count):
if not isinstance(imgs, list):
imgs = [imgs]
if censor and (modules.config.default_black_out_nsfw or black_out_nsfw):
progressbar(async_task, progressbar_index, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
async_task.results = async_task.results + imgs
if do_not_show_finished_images:
@ -147,7 +155,8 @@ def worker():
base_model_name = args.pop()
refiner_model_name = args.pop()
refiner_switch = args.pop()
loras = get_enabled_loras([[bool(args.pop()), str(args.pop()), float(args.pop())] for _ in range(modules.config.default_max_lora_number)])
loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in
range(modules.config.default_max_lora_number)])
input_image_checkbox = args.pop()
current_tab = args.pop()
uov_method = args.pop()
@ -160,12 +169,15 @@ def worker():
disable_preview = args.pop()
disable_intermediate_results = args.pop()
disable_seed_increment = args.pop()
black_out_nsfw = args.pop()
adm_scaler_positive = args.pop()
adm_scaler_negative = args.pop()
adm_scaler_end = args.pop()
adaptive_cfg = args.pop()
clip_skip = args.pop()
sampler_name = args.pop()
scheduler_name = args.pop()
vae_name = args.pop()
overwrite_step = args.pop()
overwrite_switch = args.pop()
overwrite_width = args.pop()
@ -195,7 +207,8 @@ def worker():
inpaint_erode_or_dilate = args.pop()
save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
metadata_scheme = MetadataScheme(args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
metadata_scheme = MetadataScheme(
args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
cn_tasks = {x: [] for x in flags.ip_list}
for _ in range(flags.controlnet_image_count):
@ -225,10 +238,12 @@ def worker():
steps = performance_selection.steps()
performance_loras = []
if performance_selection == Performance.EXTREME_SPEED:
print('Enter LCM mode.')
progressbar(async_task, 1, 'Downloading LCM components ...')
loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
if refiner_model_name != 'None':
print(f'Refiner disabled in LCM mode.')
@ -247,7 +262,7 @@ def worker():
elif performance_selection == Performance.LIGHTNING:
print('Enter Lightning mode.')
progressbar(async_task, 1, 'Downloading Lightning components ...')
loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)]
performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)]
if refiner_model_name != 'None':
print(f'Refiner disabled in Lightning mode.')
@ -263,7 +278,27 @@ def worker():
adm_scaler_negative = 1.0
adm_scaler_end = 0.0
elif performance_selection == Performance.HYPER_SD:
print('Enter Hyper-SD mode.')
progressbar(async_task, 1, 'Downloading Hyper-SD components ...')
performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)]
if refiner_model_name != 'None':
print(f'Refiner disabled in Hyper-SD mode.')
refiner_model_name = 'None'
sampler_name = 'dpmpp_sde_gpu'
scheduler_name = 'karras'
sharpness = 0.0
guidance_scale = 1.0
adaptive_cfg = 1.0
refiner_switch = 1.0
adm_scaler_positive = 1.0
adm_scaler_negative = 1.0
adm_scaler_end = 0.0
print(f'[Parameters] Adaptive CFG = {adaptive_cfg}')
print(f'[Parameters] CLIP Skip = {clip_skip}')
print(f'[Parameters] Sharpness = {sharpness}')
print(f'[Parameters] ControlNet Softness = {controlnet_softness}')
print(f'[Parameters] ADM Scale = '
@ -425,14 +460,21 @@ def worker():
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
progressbar(async_task, 3, 'Loading models ...')
progressbar(async_task, 2, 'Loading models ...')
lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, performance_selection)
loras, prompt = parse_lora_references_from_prompt(prompt, loras, modules.config.default_max_lora_number, lora_filenames=lora_filenames)
loras += performance_loras
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner)
use_synthetic_refiner=use_synthetic_refiner, vae_name=vae_name)
pipeline.set_clip_skip(clip_skip)
progressbar(async_task, 3, 'Processing prompts ...')
tasks = []
for i in range(image_number):
if disable_seed_increment:
task_seed = seed % (constants.MAX_SEED + 1)
@ -443,14 +485,20 @@ def worker():
task_prompt = apply_wildcards(prompt, task_rng, i, read_wildcards_in_order)
task_prompt = apply_arrays(task_prompt, i)
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, read_wildcards_in_order)
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in extra_negative_prompts]
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in
extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in
extra_negative_prompts]
positive_basic_workloads = []
negative_basic_workloads = []
task_styles = style_selections.copy()
if use_style:
for s in style_selections:
for i, s in enumerate(task_styles):
if s == random_style_name:
s = get_random_style(task_rng)
task_styles[i] = s
p, n = apply_style(s, positive=task_prompt)
positive_basic_workloads = positive_basic_workloads + p
negative_basic_workloads = negative_basic_workloads + n
@ -478,29 +526,30 @@ def worker():
negative_top_k=len(negative_basic_workloads),
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
styles=task_styles
))
if use_expansion:
for i, t in enumerate(tasks):
progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...')
progressbar(async_task, 4, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
for i, t in enumerate(tasks):
progressbar(async_task, 7, f'Encoding positive #{i + 1} ...')
progressbar(async_task, 5, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
for i, t in enumerate(tasks):
if abs(float(cfg_scale) - 1.0) < 1e-4:
t['uc'] = pipeline.clone_cond(t['c'])
else:
progressbar(async_task, 10, f'Encoding negative #{i + 1} ...')
progressbar(async_task, 6, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
if len(goals) > 0:
progressbar(async_task, 13, 'Image processing ...')
progressbar(async_task, 7, 'Image processing ...')
if 'vary' in goals:
if 'subtle' in uov_method:
@ -521,7 +570,7 @@ def worker():
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
progressbar(async_task, 8, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
@ -538,7 +587,7 @@ def worker():
if 'upscale' in goals:
H, W, C = uov_input_image.shape
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
progressbar(async_task, 9, f'Upscaling image from {str((H, W))} ...')
uov_input_image = perform_upscale(uov_input_image)
print(f'Image upscaled.')
@ -572,8 +621,12 @@ def worker():
if direct_return:
d = [('Upscale (Fast)', 'upscale_fast', '2x')]
if modules.config.default_black_out_nsfw or black_out_nsfw:
progressbar(async_task, 100, 'Checking for NSFW content ...')
uov_input_image = default_censor(uov_input_image)
progressbar(async_task, 100, 'Saving image to system ...')
uov_input_image_path = log(uov_input_image, d, output_format=output_format)
yield_result(async_task, uov_input_image_path, do_not_show_finished_images=True)
yield_result(async_task, uov_input_image_path, black_out_nsfw, False, do_not_show_finished_images=True)
return
tiled = True
@ -583,7 +636,7 @@ def worker():
denoising_strength = overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
progressbar(async_task, 10, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
@ -637,11 +690,11 @@ def worker():
)
if debugging_inpaint_preprocessor:
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(),
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), black_out_nsfw,
do_not_show_finished_images=True)
return
progressbar(async_task, 13, 'VAE Inpaint encoding ...')
progressbar(async_task, 11, 'VAE Inpaint encoding ...')
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
@ -661,7 +714,7 @@ def worker():
latent_swap = None
if candidate_vae_swap is not None:
progressbar(async_task, 13, 'VAE SD15 encoding ...')
progressbar(async_task, 12, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
@ -701,7 +754,7 @@ def worker():
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_cpds]:
cn_img, cn_stop, cn_weight = task
@ -713,7 +766,7 @@ def worker():
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_ip]:
cn_img, cn_stop, cn_weight = task
@ -724,7 +777,7 @@ def worker():
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_ip_face]:
cn_img, cn_stop, cn_weight = task
@ -738,7 +791,7 @@ def worker():
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
if debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True)
return
all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face]
@ -773,29 +826,48 @@ def worker():
final_sampler_name = sampler_name
final_scheduler_name = scheduler_name
if scheduler_name == 'lcm':
if scheduler_name in ['lcm', 'tcd']:
final_scheduler_name = 'sgm_uniform'
if pipeline.final_unet is not None:
pipeline.final_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_unet,
sampling='lcm',
zsnr=False)[0]
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_refiner_unet,
sampling='lcm',
zsnr=False)[0]
print('Using lcm scheduler.')
async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])
def patch_discrete(unet):
return core.opModelSamplingDiscrete.patch(
pipeline.final_unet,
sampling=scheduler_name,
zsnr=False)[0]
if pipeline.final_unet is not None:
pipeline.final_unet = patch_discrete(pipeline.final_unet)
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet)
print(f'Using {scheduler_name} scheduler.')
elif scheduler_name == 'edm_playground_v2.5':
final_scheduler_name = 'karras'
def patch_edm(unet):
return core.opModelSamplingContinuousEDM.patch(
unet,
sampling=scheduler_name,
sigma_max=120.0,
sigma_min=0.002)[0]
if pipeline.final_unet is not None:
pipeline.final_unet = patch_edm(pipeline.final_unet)
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet)
print(f'Using {scheduler_name} scheduler.')
async_task.yields.append(['preview', (flags.preparation_step_count, 'Moving model to GPU ...', None)])
def callback(step, x0, x, total_steps, y):
done_steps = current_task_id * steps + step
async_task.yields.append(['preview', (
int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
f'Step {step}/{total_steps} in the {current_task_id + 1}{ordinal_suffix(current_task_id + 1)} Sampling', y)])
int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float(done_steps) / float(all_steps)),
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{image_number} ...', y)])
for current_task_id, task in enumerate(tasks):
current_progress = int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float(current_task_id * steps) / float(all_steps))
progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{image_number} ...')
execution_start_time = time.perf_counter()
try:
@ -838,11 +910,18 @@ def worker():
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
img_paths = []
current_progress = int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float((current_task_id + 1) * steps) / float(all_steps))
if modules.config.default_black_out_nsfw or black_out_nsfw:
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
imgs = default_censor(imgs)
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{image_number} to system ...')
for x in imgs:
d = [('Prompt', 'prompt', task['log_positive_prompt']),
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
('Styles', 'styles', str(raw_style_selections)),
('Styles', 'styles',
str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])),
('Performance', 'performance', performance_selection.value)]
if performance_selection.steps() != steps:
@ -865,10 +944,14 @@ def worker():
if refiner_swap_method != flags.refiner_swap_method:
d.append(('Refiner Swap Method', 'refiner_swap_method', refiner_swap_method))
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
d.append(('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
d.append(
('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))
if clip_skip > 1:
d.append(('CLIP Skip', 'clip_skip', clip_skip))
d.append(('Sampler', 'sampler', sampler_name))
d.append(('Scheduler', 'scheduler', scheduler_name))
d.append(('VAE', 'vae', vae_name))
d.append(('Seed', 'seed', str(task['task_seed'])))
if freeu_enabled:
@ -883,12 +966,14 @@ def worker():
metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme)
metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
task['log_negative_prompt'], task['negative'],
steps, base_model_name, refiner_model_name, loras)
d.append(('Metadata Scheme', 'metadata_scheme', metadata_scheme.value if save_metadata_to_images else save_metadata_to_images))
steps, base_model_name, refiner_model_name, loras, vae_name)
d.append(('Metadata Scheme', 'metadata_scheme',
metadata_scheme.value if save_metadata_to_images else save_metadata_to_images))
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
img_paths.append(log(x, d, metadata_parser, output_format))
img_paths.append(log(x, d, metadata_parser, output_format, task))
yield_result(async_task, img_paths, do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results)
yield_result(async_task, img_paths, black_out_nsfw, False,
do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results)
except ldm_patched.modules.model_management.InterruptProcessingException as e:
if async_task.last_stop == 'skip':
print('User skipped')

View File

@ -2,13 +2,14 @@ import os
import json
import math
import numbers
import args_manager
import tempfile
import modules.flags
import modules.sdxl_styles
from modules.model_loader import load_file_from_url
from modules.util import get_files_from_folder, makedirs_with_log
from modules.extra_utils import makedirs_with_log, get_files_from_folder, try_eval_env_var
from modules.flags import OutputFormat, Performance, MetadataScheme
@ -20,7 +21,7 @@ def get_config_path(key, default_value):
else:
return os.path.abspath(default_value)
wildcards_max_bfs_depth = 64
config_path = get_config_path('config_path', "./config.txt")
config_example_path = get_config_path('config_example_path', "config_modification_tutorial.txt")
config_dict = {}
@ -189,16 +190,18 @@ paths_checkpoints = get_dir_or_set_default('path_checkpoints', ['../models/check
paths_loras = get_dir_or_set_default('path_loras', ['../models/loras/'], True)
path_embeddings = get_dir_or_set_default('path_embeddings', '../models/embeddings/')
path_vae_approx = get_dir_or_set_default('path_vae_approx', '../models/vae_approx/')
path_vae = get_dir_or_set_default('path_vae', '../models/vae/')
path_upscale_models = get_dir_or_set_default('path_upscale_models', '../models/upscale_models/')
path_inpaint = get_dir_or_set_default('path_inpaint', '../models/inpaint/')
path_controlnet = get_dir_or_set_default('path_controlnet', '../models/controlnet/')
path_clip_vision = get_dir_or_set_default('path_clip_vision', '../models/clip_vision/')
path_fooocus_expansion = get_dir_or_set_default('path_fooocus_expansion', '../models/prompt_expansion/fooocus_expansion')
path_wildcards = get_dir_or_set_default('path_wildcards', '../wildcards/')
path_safety_checker = get_dir_or_set_default('path_safety_checker', '../models/safety_checker/')
path_outputs = get_path_output()
def get_config_item_or_set_default(key, default_value, validator, disable_empty_as_none=False):
def get_config_item_or_set_default(key, default_value, validator, disable_empty_as_none=False, expected_type=None):
global config_dict, visited_keys
if key not in visited_keys:
@ -206,6 +209,7 @@ def get_config_item_or_set_default(key, default_value, validator, disable_empty_
v = os.getenv(key)
if v is not None:
v = try_eval_env_var(v, expected_type)
print(f"Environment: {key} = {v}")
config_dict[key] = v
@ -250,41 +254,49 @@ temp_path = init_temp_path(get_config_item_or_set_default(
key='temp_path',
default_value=default_temp_path,
validator=lambda x: isinstance(x, str),
expected_type=str
), default_temp_path)
temp_path_cleanup_on_launch = get_config_item_or_set_default(
key='temp_path_cleanup_on_launch',
default_value=True,
validator=lambda x: isinstance(x, bool)
validator=lambda x: isinstance(x, bool),
expected_type=bool
)
default_base_model_name = default_model = get_config_item_or_set_default(
key='default_model',
default_value='model.safetensors',
validator=lambda x: isinstance(x, str)
validator=lambda x: isinstance(x, str),
expected_type=str
)
previous_default_models = get_config_item_or_set_default(
key='previous_default_models',
default_value=[],
validator=lambda x: isinstance(x, list) and all(isinstance(k, str) for k in x)
validator=lambda x: isinstance(x, list) and all(isinstance(k, str) for k in x),
expected_type=list
)
default_refiner_model_name = default_refiner = get_config_item_or_set_default(
key='default_refiner',
default_value='None',
validator=lambda x: isinstance(x, str)
validator=lambda x: isinstance(x, str),
expected_type=str
)
default_refiner_switch = get_config_item_or_set_default(
key='default_refiner_switch',
default_value=0.8,
validator=lambda x: isinstance(x, numbers.Number) and 0 <= x <= 1
validator=lambda x: isinstance(x, numbers.Number) and 0 <= x <= 1,
expected_type=numbers.Number
)
default_loras_min_weight = get_config_item_or_set_default(
key='default_loras_min_weight',
default_value=-2,
validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10
validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10,
expected_type=numbers.Number
)
default_loras_max_weight = get_config_item_or_set_default(
key='default_loras_max_weight',
default_value=2,
validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10
validator=lambda x: isinstance(x, numbers.Number) and -10 <= x <= 10,
expected_type=numbers.Number
)
default_loras = get_config_item_or_set_default(
key='default_loras',
@ -318,33 +330,45 @@ default_loras = get_config_item_or_set_default(
validator=lambda x: isinstance(x, list) and all(
len(y) == 3 and isinstance(y[0], bool) and isinstance(y[1], str) and isinstance(y[2], numbers.Number)
or len(y) == 2 and isinstance(y[0], str) and isinstance(y[1], numbers.Number)
for y in x)
for y in x),
expected_type=list
)
default_loras = [(y[0], y[1], y[2]) if len(y) == 3 else (True, y[0], y[1]) for y in default_loras]
default_max_lora_number = get_config_item_or_set_default(
key='default_max_lora_number',
default_value=len(default_loras) if isinstance(default_loras, list) and len(default_loras) > 0 else 5,
validator=lambda x: isinstance(x, int) and x >= 1
validator=lambda x: isinstance(x, int) and x >= 1,
expected_type=int
)
default_cfg_scale = get_config_item_or_set_default(
key='default_cfg_scale',
default_value=7.0,
validator=lambda x: isinstance(x, numbers.Number)
validator=lambda x: isinstance(x, numbers.Number),
expected_type=numbers.Number
)
default_sample_sharpness = get_config_item_or_set_default(
key='default_sample_sharpness',
default_value=2.0,
validator=lambda x: isinstance(x, numbers.Number)
validator=lambda x: isinstance(x, numbers.Number),
expected_type=numbers.Number
)
default_sampler = get_config_item_or_set_default(
key='default_sampler',
default_value='dpmpp_2m_sde_gpu',
validator=lambda x: x in modules.flags.sampler_list
validator=lambda x: x in modules.flags.sampler_list,
expected_type=str
)
default_scheduler = get_config_item_or_set_default(
key='default_scheduler',
default_value='karras',
validator=lambda x: x in modules.flags.scheduler_list
validator=lambda x: x in modules.flags.scheduler_list,
expected_type=str
)
default_vae = get_config_item_or_set_default(
key='default_vae',
default_value=modules.flags.default_vae,
validator=lambda x: isinstance(x, str),
expected_type=str
)
default_styles = get_config_item_or_set_default(
key='default_styles',
@ -353,117 +377,144 @@ default_styles = get_config_item_or_set_default(
"Fooocus Enhance",
"Fooocus Sharp"
],
validator=lambda x: isinstance(x, list) and all(y in modules.sdxl_styles.legal_style_names for y in x)
validator=lambda x: isinstance(x, list) and all(y in modules.sdxl_styles.legal_style_names for y in x),
expected_type=list
)
default_prompt_negative = get_config_item_or_set_default(
key='default_prompt_negative',
default_value='',
validator=lambda x: isinstance(x, str),
disable_empty_as_none=True
disable_empty_as_none=True,
expected_type=str
)
default_prompt = get_config_item_or_set_default(
key='default_prompt',
default_value='',
validator=lambda x: isinstance(x, str),
disable_empty_as_none=True
disable_empty_as_none=True,
expected_type=str
)
default_performance = get_config_item_or_set_default(
key='default_performance',
default_value=Performance.SPEED.value,
validator=lambda x: x in Performance.list()
validator=lambda x: x in Performance.list(),
expected_type=str
)
default_advanced_checkbox = get_config_item_or_set_default(
key='default_advanced_checkbox',
default_value=False,
validator=lambda x: isinstance(x, bool)
validator=lambda x: isinstance(x, bool),
expected_type=bool
)
default_max_image_number = get_config_item_or_set_default(
key='default_max_image_number',
default_value=32,
validator=lambda x: isinstance(x, int) and x >= 1
validator=lambda x: isinstance(x, int) and x >= 1,
expected_type=int
)
default_output_format = get_config_item_or_set_default(
key='default_output_format',
default_value='png',
validator=lambda x: x in OutputFormat.list()
validator=lambda x: x in OutputFormat.list(),
expected_type=str
)
default_image_number = get_config_item_or_set_default(
key='default_image_number',
default_value=2,
validator=lambda x: isinstance(x, int) and 1 <= x <= default_max_image_number
validator=lambda x: isinstance(x, int) and 1 <= x <= default_max_image_number,
expected_type=int
)
checkpoint_downloads = get_config_item_or_set_default(
key='checkpoint_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items()),
expected_type=dict
)
lora_downloads = get_config_item_or_set_default(
key='lora_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items()),
expected_type=dict
)
embeddings_downloads = get_config_item_or_set_default(
key='embeddings_downloads',
default_value={},
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items())
validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items()),
expected_type=dict
)
available_aspect_ratios = get_config_item_or_set_default(
key='available_aspect_ratios',
default_value=[
'704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152',
'896*1152', '896*1088', '960*1088', '960*1024', '1024*1024', '1024*960',
'1088*960', '1088*896', '1152*896', '1152*832', '1216*832', '1280*768',
'1344*768', '1344*704', '1408*704', '1472*704', '1536*640', '1600*640',
'1664*576', '1728*576'
],
validator=lambda x: isinstance(x, list) and all('*' in v for v in x) and len(x) > 1
default_value=modules.flags.sdxl_aspect_ratios,
validator=lambda x: isinstance(x, list) and all('*' in v for v in x) and len(x) > 1,
expected_type=list
)
default_aspect_ratio = get_config_item_or_set_default(
key='default_aspect_ratio',
default_value='1152*896' if '1152*896' in available_aspect_ratios else available_aspect_ratios[0],
validator=lambda x: x in available_aspect_ratios
validator=lambda x: x in available_aspect_ratios,
expected_type=str
)
default_inpaint_engine_version = get_config_item_or_set_default(
key='default_inpaint_engine_version',
default_value='v2.6',
validator=lambda x: x in modules.flags.inpaint_engine_versions
validator=lambda x: x in modules.flags.inpaint_engine_versions,
expected_type=str
)
default_cfg_tsnr = get_config_item_or_set_default(
key='default_cfg_tsnr',
default_value=7.0,
validator=lambda x: isinstance(x, numbers.Number)
validator=lambda x: isinstance(x, numbers.Number),
expected_type=numbers.Number
)
default_clip_skip = get_config_item_or_set_default(
key='default_clip_skip',
default_value=2,
validator=lambda x: isinstance(x, int) and 1 <= x <= modules.flags.clip_skip_max,
expected_type=int
)
default_overwrite_step = get_config_item_or_set_default(
key='default_overwrite_step',
default_value=-1,
validator=lambda x: isinstance(x, int)
validator=lambda x: isinstance(x, int),
expected_type=int
)
default_overwrite_switch = get_config_item_or_set_default(
key='default_overwrite_switch',
default_value=-1,
validator=lambda x: isinstance(x, int)
validator=lambda x: isinstance(x, int),
expected_type=int
)
example_inpaint_prompts = get_config_item_or_set_default(
key='example_inpaint_prompts',
default_value=[
'highly detailed face', 'detailed girl face', 'detailed man face', 'detailed hand', 'beautiful eyes'
],
validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x)
validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x),
expected_type=list
)
default_black_out_nsfw = get_config_item_or_set_default(
key='default_black_out_nsfw',
default_value=False,
validator=lambda x: isinstance(x, bool),
expected_type=bool
)
default_save_metadata_to_images = get_config_item_or_set_default(
key='default_save_metadata_to_images',
default_value=False,
validator=lambda x: isinstance(x, bool)
validator=lambda x: isinstance(x, bool),
expected_type=bool
)
default_metadata_scheme = get_config_item_or_set_default(
key='default_metadata_scheme',
default_value=MetadataScheme.FOOOCUS.value,
validator=lambda x: x in [y[1] for y in modules.flags.metadata_scheme if y[1] == x]
validator=lambda x: x in [y[1] for y in modules.flags.metadata_scheme if y[1] == x],
expected_type=str
)
metadata_created_by = get_config_item_or_set_default(
key='metadata_created_by',
default_value='',
validator=lambda x: isinstance(x, str)
validator=lambda x: isinstance(x, str),
expected_type=str
)
example_inpaint_prompts = [[x] for x in example_inpaint_prompts]
@ -481,6 +532,8 @@ possible_preset_keys = {
"default_loras": "<processed>",
"default_cfg_scale": "guidance_scale",
"default_sample_sharpness": "sharpness",
"default_cfg_tsnr": "adaptive_cfg",
"default_clip_skip": "clip_skip",
"default_sampler": "sampler",
"default_scheduler": "scheduler",
"default_overwrite_step": "steps",
@ -493,7 +546,8 @@ possible_preset_keys = {
"default_save_metadata_to_images": "default_save_metadata_to_images",
"checkpoint_downloads": "checkpoint_downloads",
"embeddings_downloads": "embeddings_downloads",
"lora_downloads": "lora_downloads"
"lora_downloads": "lora_downloads",
"default_vae": "vae"
}
REWRITE_PRESET = False
@ -514,7 +568,7 @@ def add_ratio(x):
default_aspect_ratio = add_ratio(default_aspect_ratio)
available_aspect_ratios = [add_ratio(x) for x in available_aspect_ratios]
available_aspect_ratios_labels = [add_ratio(x) for x in available_aspect_ratios]
# Only write config in the first launch.
@ -535,26 +589,28 @@ with open(config_example_path, "w", encoding="utf-8") as json_file:
model_filenames = []
lora_filenames = []
vae_filenames = []
wildcard_filenames = []
sdxl_lcm_lora = 'sdxl_lcm_lora.safetensors'
sdxl_lightning_lora = 'sdxl_lightning_4step_lora.safetensors'
loras_metadata_remove = [sdxl_lcm_lora, sdxl_lightning_lora]
def get_model_filenames(folder_paths, extensions=None, name_filter=None):
if extensions is None:
extensions = ['.pth', '.ckpt', '.bin', '.safetensors', '.fooocus.patch']
files = []
if not isinstance(folder_paths, list):
folder_paths = [folder_paths]
for folder in folder_paths:
files += get_files_from_folder(folder, extensions, name_filter)
return files
def update_files():
global model_filenames, lora_filenames, wildcard_filenames, available_presets
global model_filenames, lora_filenames, vae_filenames, wildcard_filenames, available_presets
model_filenames = get_model_filenames(paths_checkpoints)
lora_filenames = get_model_filenames(paths_loras)
vae_filenames = get_model_filenames(path_vae)
wildcard_filenames = get_files_from_folder(path_wildcards, ['.txt'])
available_presets = get_presets()
return
@ -602,17 +658,27 @@ def downloading_sdxl_lcm_lora():
load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/sdxl_lcm_lora.safetensors',
model_dir=paths_loras[0],
file_name=sdxl_lcm_lora
file_name=modules.flags.PerformanceLoRA.EXTREME_SPEED.value
)
return sdxl_lcm_lora
return modules.flags.PerformanceLoRA.EXTREME_SPEED.value
def downloading_sdxl_lightning_lora():
load_file_from_url(
url='https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_4step_lora.safetensors',
url='https://huggingface.co/mashb1t/misc/resolve/main/sdxl_lightning_4step_lora.safetensors',
model_dir=paths_loras[0],
file_name=sdxl_lightning_lora
file_name=modules.flags.PerformanceLoRA.LIGHTNING.value
)
return sdxl_lightning_lora
return modules.flags.PerformanceLoRA.LIGHTNING.value
def downloading_sdxl_hyper_sd_lora():
load_file_from_url(
url='https://huggingface.co/mashb1t/misc/resolve/main/sdxl_hyper_sd_4step_lora.safetensors',
model_dir=paths_loras[0],
file_name=modules.flags.PerformanceLoRA.HYPER_SD.value
)
return modules.flags.PerformanceLoRA.HYPER_SD.value
def downloading_controlnet_canny():
@ -679,5 +745,13 @@ def downloading_upscale_model():
)
return os.path.join(path_upscale_models, 'fooocus_upscaler_s409985e5.bin')
def downloading_safety_checker_model():
load_file_from_url(
url='https://huggingface.co/mashb1t/misc/resolve/main/stable-diffusion-safety-checker.bin',
model_dir=path_safety_checker,
file_name='stable-diffusion-safety-checker.bin'
)
return os.path.join(path_safety_checker, 'stable-diffusion-safety-checker.bin')
update_files()

View File

@ -21,8 +21,7 @@ from modules.lora import match_lora
from modules.util import get_file_from_folder_list
from ldm_patched.modules.lora import model_lora_keys_unet, model_lora_keys_clip
from modules.config import path_embeddings
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete, ModelSamplingContinuousEDM
opEmptyLatentImage = EmptyLatentImage()
opVAEDecode = VAEDecode()
@ -32,15 +31,17 @@ opVAEEncodeTiled = VAEEncodeTiled()
opControlNetApplyAdvanced = ControlNetApplyAdvanced()
opFreeU = FreeU_V2()
opModelSamplingDiscrete = ModelSamplingDiscrete()
opModelSamplingContinuousEDM = ModelSamplingContinuousEDM()
class StableDiffusionModel:
def __init__(self, unet=None, vae=None, clip=None, clip_vision=None, filename=None):
def __init__(self, unet=None, vae=None, clip=None, clip_vision=None, filename=None, vae_filename=None):
self.unet = unet
self.vae = vae
self.clip = clip
self.clip_vision = clip_vision
self.filename = filename
self.vae_filename = vae_filename
self.unet_with_lora = unet
self.clip_with_lora = clip
self.visited_loras = ''
@ -142,9 +143,10 @@ def apply_controlnet(positive, negative, control_net, image, strength, start_per
@torch.no_grad()
@torch.inference_mode()
def load_model(ckpt_filename):
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=path_embeddings)
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision, filename=ckpt_filename)
def load_model(ckpt_filename, vae_filename=None):
unet, clip, vae, vae_filename, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=path_embeddings,
vae_filename_param=vae_filename)
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision, filename=ckpt_filename, vae_filename=vae_filename)
@torch.no_grad()

View File

@ -3,6 +3,7 @@ import os
import torch
import modules.patch
import modules.config
import modules.flags
import ldm_patched.modules.model_management
import ldm_patched.modules.latent_formats
import modules.inpaint_worker
@ -58,17 +59,21 @@ def assert_model_integrity():
@torch.no_grad()
@torch.inference_mode()
def refresh_base_model(name):
def refresh_base_model(name, vae_name=None):
global model_base
filename = get_file_from_folder_list(name, modules.config.paths_checkpoints)
if model_base.filename == filename:
vae_filename = None
if vae_name is not None and vae_name != modules.flags.default_vae:
vae_filename = get_file_from_folder_list(vae_name, modules.config.path_vae)
if model_base.filename == filename and model_base.vae_filename == vae_filename:
return
model_base = core.StableDiffusionModel()
model_base = core.load_model(filename)
model_base = core.load_model(filename, vae_filename)
print(f'Base model loaded: {model_base.filename}')
print(f'VAE loaded: {model_base.vae_filename}')
return
@ -196,6 +201,17 @@ def clip_encode(texts, pool_top_k=1):
return [[torch.cat(cond_list, dim=1), {"pooled_output": pooled_acc}]]
@torch.no_grad()
@torch.inference_mode()
def set_clip_skip(clip_skip: int):
global final_clip
if final_clip is None:
return
final_clip.clip_layer(-abs(clip_skip))
return
@torch.no_grad()
@torch.inference_mode()
def clear_all_caches():
@ -216,7 +232,7 @@ def prepare_text_encoder(async_call=True):
@torch.no_grad()
@torch.inference_mode()
def refresh_everything(refiner_model_name, base_model_name, loras,
base_model_additional_loras=None, use_synthetic_refiner=False):
base_model_additional_loras=None, use_synthetic_refiner=False, vae_name=None):
global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, final_expansion
final_unet = None
@ -227,11 +243,11 @@ def refresh_everything(refiner_model_name, base_model_name, loras,
if use_synthetic_refiner and refiner_model_name == 'None':
print('Synthetic Refiner Activated')
refresh_base_model(base_model_name)
refresh_base_model(base_model_name, vae_name)
synthesize_refiner_model()
else:
refresh_refiner_model(refiner_model_name)
refresh_base_model(base_model_name)
refresh_base_model(base_model_name, vae_name)
refresh_loras(loras, base_model_additional_loras=base_model_additional_loras)
assert_model_integrity()
@ -254,7 +270,8 @@ def refresh_everything(refiner_model_name, base_model_name, loras,
refresh_everything(
refiner_model_name=modules.config.default_refiner_model_name,
base_model_name=modules.config.default_base_model_name,
loras=get_enabled_loras(modules.config.default_loras)
loras=get_enabled_loras(modules.config.default_loras),
vae_name=modules.config.default_vae,
)

41
modules/extra_utils.py Normal file
View File

@ -0,0 +1,41 @@
import os
from ast import literal_eval
def makedirs_with_log(path):
try:
os.makedirs(path, exist_ok=True)
except OSError as error:
print(f'Directory {path} could not be created, reason: {error}')
def get_files_from_folder(folder_path, extensions=None, name_filter=None):
if not os.path.isdir(folder_path):
raise ValueError("Folder path is not a valid directory.")
filenames = []
for root, _, files in os.walk(folder_path, topdown=False):
relative_path = os.path.relpath(root, folder_path)
if relative_path == ".":
relative_path = ""
for filename in sorted(files, key=lambda s: s.casefold()):
_, file_extension = os.path.splitext(filename)
if (extensions is None or file_extension.lower() in extensions) and (name_filter is None or name_filter in _):
path = os.path.join(relative_path, filename)
filenames.append(path)
return filenames
def try_eval_env_var(value: str, expected_type=None):
try:
value_eval = value
if expected_type is bool:
value_eval = value.title()
value_eval = literal_eval(value_eval)
if expected_type is not None and not isinstance(value_eval, expected_type):
return value
return value_eval
except:
return value

View File

@ -34,7 +34,8 @@ KSAMPLER = {
"dpmpp_3m_sde": "",
"dpmpp_3m_sde_gpu": "",
"ddpm": "",
"lcm": "LCM"
"lcm": "LCM",
"tcd": "TCD"
}
SAMPLER_EXTRA = {
@ -47,12 +48,16 @@ SAMPLERS = KSAMPLER | SAMPLER_EXTRA
KSAMPLER_NAMES = list(KSAMPLER.keys())
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo"]
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo", "align_your_steps", "tcd", "edm_playground_v2.5"]
SAMPLER_NAMES = KSAMPLER_NAMES + list(SAMPLER_EXTRA.keys())
sampler_list = SAMPLER_NAMES
scheduler_list = SCHEDULER_NAMES
clip_skip_max = 12
default_vae = 'Default (model)'
refiner_swap_method = 'joint'
cn_ip = "ImagePrompt"
@ -78,6 +83,14 @@ inpaint_options = [inpaint_option_default, inpaint_option_detail, inpaint_option
desc_type_photo = 'Photograph'
desc_type_anime = 'Art/Anime'
sdxl_aspect_ratios = [
'704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152',
'896*1152', '896*1088', '960*1088', '960*1024', '1024*1024', '1024*960',
'1088*960', '1088*896', '1152*896', '1152*832', '1216*832', '1280*768',
'1344*768', '1344*704', '1408*704', '1472*704', '1536*640', '1600*640',
'1664*576', '1728*576'
]
class MetadataScheme(Enum):
FOOOCUS = 'fooocus'
@ -90,6 +103,7 @@ metadata_scheme = [
]
controlnet_image_count = 4
preparation_step_count = 13
class OutputFormat(Enum):
@ -102,11 +116,24 @@ class OutputFormat(Enum):
return list(map(lambda c: c.value, cls))
class PerformanceLoRA(Enum):
QUALITY = None
SPEED = None
EXTREME_SPEED = 'sdxl_lcm_lora.safetensors'
LIGHTNING = 'sdxl_lightning_4step_lora.safetensors'
HYPER_SD = 'sdxl_hyper_sd_4step_lora.safetensors'
class Steps(IntEnum):
QUALITY = 60
SPEED = 30
EXTREME_SPEED = 8
LIGHTNING = 4
HYPER_SD = 4
@classmethod
def keys(cls) -> list:
return list(map(lambda c: c, Steps.__members__))
class StepsUOV(IntEnum):
@ -114,6 +141,7 @@ class StepsUOV(IntEnum):
SPEED = 18
EXTREME_SPEED = 8
LIGHTNING = 4
HYPER_SD = 4
class Performance(Enum):
@ -121,19 +149,31 @@ class Performance(Enum):
SPEED = 'Speed'
EXTREME_SPEED = 'Extreme Speed'
LIGHTNING = 'Lightning'
HYPER_SD = 'Hyper-SD'
@classmethod
def list(cls) -> list:
return list(map(lambda c: c.value, cls))
@classmethod
def values(cls) -> list:
return list(map(lambda c: c.value, cls))
@classmethod
def by_steps(cls, steps: int | str):
return cls[Steps(int(steps)).name]
@classmethod
def has_restricted_features(cls, x) -> bool:
if isinstance(x, Performance):
x = x.value
return x in [cls.EXTREME_SPEED.value, cls.LIGHTNING.value]
return x in [cls.EXTREME_SPEED.value, cls.LIGHTNING.value, cls.HYPER_SD.value]
def steps(self) -> int | None:
return Steps[self.name].value if Steps[self.name] else None
return Steps[self.name].value if self.name in Steps.__members__ else None
def steps_uov(self) -> int | None:
return StepsUOV[self.name].value if Steps[self.name] else None
return StepsUOV[self.name].value if self.name in StepsUOV.__members__ else None
def lora_filename(self) -> str | None:
return PerformanceLoRA[self.name].value if self.name in PerformanceLoRA.__members__ else None

View File

@ -32,20 +32,22 @@ def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool):
get_str('prompt', 'Prompt', loaded_parameter_dict, results)
get_str('negative_prompt', 'Negative Prompt', loaded_parameter_dict, results)
get_list('styles', 'Styles', loaded_parameter_dict, results)
get_str('performance', 'Performance', loaded_parameter_dict, results)
performance = get_str('performance', 'Performance', loaded_parameter_dict, results)
get_steps('steps', 'Steps', loaded_parameter_dict, results)
get_float('overwrite_switch', 'Overwrite Switch', loaded_parameter_dict, results)
get_number('overwrite_switch', 'Overwrite Switch', loaded_parameter_dict, results)
get_resolution('resolution', 'Resolution', loaded_parameter_dict, results)
get_float('guidance_scale', 'Guidance Scale', loaded_parameter_dict, results)
get_float('sharpness', 'Sharpness', loaded_parameter_dict, results)
get_number('guidance_scale', 'Guidance Scale', loaded_parameter_dict, results)
get_number('sharpness', 'Sharpness', loaded_parameter_dict, results)
get_adm_guidance('adm_guidance', 'ADM Guidance', loaded_parameter_dict, results)
get_str('refiner_swap_method', 'Refiner Swap Method', loaded_parameter_dict, results)
get_float('adaptive_cfg', 'CFG Mimicking from TSNR', loaded_parameter_dict, results)
get_number('adaptive_cfg', 'CFG Mimicking from TSNR', loaded_parameter_dict, results)
get_number('clip_skip', 'CLIP Skip', loaded_parameter_dict, results, cast_type=int)
get_str('base_model', 'Base Model', loaded_parameter_dict, results)
get_str('refiner_model', 'Refiner Model', loaded_parameter_dict, results)
get_float('refiner_switch', 'Refiner Switch', loaded_parameter_dict, results)
get_number('refiner_switch', 'Refiner Switch', loaded_parameter_dict, results)
get_str('sampler', 'Sampler', loaded_parameter_dict, results)
get_str('scheduler', 'Scheduler', loaded_parameter_dict, results)
get_str('vae', 'VAE', loaded_parameter_dict, results)
get_seed('seed', 'Seed', loaded_parameter_dict, results)
if is_generating:
@ -57,19 +59,27 @@ def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool):
get_freeu('freeu', 'FreeU', loaded_parameter_dict, results)
# prevent performance LoRAs to be added twice, by performance and by lora
performance_filename = None
if performance is not None and performance in Performance.values():
performance = Performance(performance)
performance_filename = performance.lora_filename()
for i in range(modules.config.default_max_lora_number):
get_lora(f'lora_combined_{i + 1}', f'LoRA {i + 1}', loaded_parameter_dict, results)
get_lora(f'lora_combined_{i + 1}', f'LoRA {i + 1}', loaded_parameter_dict, results, performance_filename)
return results
def get_str(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
def get_str(key: str, fallback: str | None, source_dict: dict, results: list, default=None) -> str | None:
try:
h = source_dict.get(key, source_dict.get(fallback, default))
assert isinstance(h, str)
results.append(h)
return h
except:
results.append(gr.update())
return None
def get_list(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
@ -82,11 +92,11 @@ def get_list(key: str, fallback: str | None, source_dict: dict, results: list, d
results.append(gr.update())
def get_float(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
def get_number(key: str, fallback: str | None, source_dict: dict, results: list, default=None, cast_type=float):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
assert h is not None
h = float(h)
h = cast_type(h)
results.append(h)
except:
results.append(gr.update())
@ -109,8 +119,9 @@ def get_steps(key: str, fallback: str | None, source_dict: dict, results: list,
assert h is not None
h = int(h)
# if not in steps or in steps and performance is not the same
if h not in iter(Steps) or Steps(h).name.casefold() != source_dict.get('performance', '').replace(' ',
'_').casefold():
performance_name = source_dict.get('performance', '').replace(' ', '_').replace('-', '_').casefold()
performance_candidates = [key for key in Steps.keys() if key.casefold() == performance_name and Steps[key] == h]
if len(performance_candidates) == 0:
results.append(h)
return
results.append(-1)
@ -123,7 +134,7 @@ def get_resolution(key: str, fallback: str | None, source_dict: dict, results: l
h = source_dict.get(key, source_dict.get(fallback, default))
width, height = eval(h)
formatted = modules.config.add_ratio(f'{width}*{height}')
if formatted in modules.config.available_aspect_ratios:
if formatted in modules.config.available_aspect_ratios_labels:
results.append(formatted)
results.append(-1)
results.append(-1)
@ -179,7 +190,7 @@ def get_freeu(key: str, fallback: str | None, source_dict: dict, results: list,
results.append(gr.update())
def get_lora(key: str, fallback: str | None, source_dict: dict, results: list):
def get_lora(key: str, fallback: str | None, source_dict: dict, results: list, performance_filename: str | None):
try:
split_data = source_dict.get(key, source_dict.get(fallback)).split(' : ')
enabled = True
@ -191,6 +202,9 @@ def get_lora(key: str, fallback: str | None, source_dict: dict, results: list):
name = split_data[1]
weight = split_data[2]
if name == performance_filename:
raise Exception
weight = float(weight)
results.append(enabled)
results.append(name)
@ -204,7 +218,6 @@ def get_lora(key: str, fallback: str | None, source_dict: dict, results: list):
def get_sha256(filepath):
global hash_cache
if filepath not in hash_cache:
# is_safetensors = os.path.splitext(filepath)[1].lower() == '.safetensors'
hash_cache[filepath] = sha256(filepath)
return hash_cache[filepath]
@ -220,7 +233,7 @@ def parse_meta_from_preset(preset_content):
loras = getattr(modules.config, settings_key)
if settings_key in items:
loras = items[settings_key]
for index, lora in enumerate(loras[:5]):
for index, lora in enumerate(loras[:modules.config.default_max_lora_number]):
preset_prepared[f'lora_combined_{index + 1}'] = ' : '.join(map(str, lora))
elif settings_key == "default_aspect_ratio":
if settings_key in items and items[settings_key] is not None:
@ -247,27 +260,28 @@ class MetadataParser(ABC):
self.full_prompt: str = ''
self.raw_negative_prompt: str = ''
self.full_negative_prompt: str = ''
self.steps: int = 30
self.steps: int = Steps.SPEED.value
self.base_model_name: str = ''
self.base_model_hash: str = ''
self.refiner_model_name: str = ''
self.refiner_model_hash: str = ''
self.loras: list = []
self.vae_name: str = ''
@abstractmethod
def get_scheme(self) -> MetadataScheme:
raise NotImplementedError
@abstractmethod
def parse_json(self, metadata: dict | str) -> dict:
def to_json(self, metadata: dict | str) -> dict:
raise NotImplementedError
@abstractmethod
def parse_string(self, metadata: dict) -> str:
def to_string(self, metadata: dict) -> str:
raise NotImplementedError
def set_data(self, raw_prompt, full_prompt, raw_negative_prompt, full_negative_prompt, steps, base_model_name,
refiner_model_name, loras):
refiner_model_name, loras, vae_name):
self.raw_prompt = raw_prompt
self.full_prompt = full_prompt
self.raw_negative_prompt = raw_negative_prompt
@ -289,12 +303,7 @@ class MetadataParser(ABC):
lora_path = get_file_from_folder_list(lora_name, modules.config.paths_loras)
lora_hash = get_sha256(lora_path)
self.loras.append((Path(lora_name).stem, lora_weight, lora_hash))
@staticmethod
def remove_special_loras(lora_filenames):
for lora_to_remove in modules.config.loras_metadata_remove:
if lora_to_remove in lora_filenames:
lora_filenames.remove(lora_to_remove)
self.vae_name = Path(vae_name).stem
class A1111MetadataParser(MetadataParser):
@ -310,6 +319,7 @@ class A1111MetadataParser(MetadataParser):
'steps': 'Steps',
'sampler': 'Sampler',
'scheduler': 'Scheduler',
'vae': 'VAE',
'guidance_scale': 'CFG scale',
'seed': 'Seed',
'resolution': 'Size',
@ -317,6 +327,7 @@ class A1111MetadataParser(MetadataParser):
'adm_guidance': 'ADM Guidance',
'refiner_swap_method': 'Refiner Swap Method',
'adaptive_cfg': 'Adaptive CFG',
'clip_skip': 'Clip skip',
'overwrite_switch': 'Overwrite Switch',
'freeu': 'FreeU',
'base_model': 'Model',
@ -329,7 +340,7 @@ class A1111MetadataParser(MetadataParser):
'version': 'Version'
}
def parse_json(self, metadata: str) -> dict:
def to_json(self, metadata: str) -> dict:
metadata_prompt = ''
metadata_negative_prompt = ''
@ -383,9 +394,9 @@ class A1111MetadataParser(MetadataParser):
data['styles'] = str(found_styles)
# try to load performance based on steps, fallback for direct A1111 imports
if 'steps' in data and 'performance' not in data:
if 'steps' in data and 'performance' in data is None:
try:
data['performance'] = Performance[Steps(int(data['steps'])).name].value
data['performance'] = Performance.by_steps(data['steps']).value
except ValueError | KeyError:
pass
@ -397,13 +408,12 @@ class A1111MetadataParser(MetadataParser):
data['sampler'] = k
break
for key in ['base_model', 'refiner_model']:
for key in ['base_model', 'refiner_model', 'vae']:
if key in data:
for filename in modules.config.model_filenames:
path = Path(filename)
if data[key] == path.stem:
data[key] = filename
break
if key == 'vae':
self.add_extension_to_filename(data, modules.config.vae_filenames, 'vae')
else:
self.add_extension_to_filename(data, modules.config.model_filenames, key)
lora_data = ''
if 'lora_weights' in data and data['lora_weights'] != '':
@ -412,13 +422,11 @@ class A1111MetadataParser(MetadataParser):
lora_data = data['lora_hashes']
if lora_data != '':
lora_filenames = modules.config.lora_filenames.copy()
self.remove_special_loras(lora_filenames)
for li, lora in enumerate(lora_data.split(', ')):
lora_split = lora.split(': ')
lora_name = lora_split[0]
lora_weight = lora_split[2] if len(lora_split) == 3 else lora_split[1]
for filename in lora_filenames:
for filename in modules.config.lora_filenames:
path = Path(filename)
if lora_name == path.stem:
data[f'lora_combined_{li + 1}'] = f'{filename} : {lora_weight}'
@ -426,13 +434,14 @@ class A1111MetadataParser(MetadataParser):
return data
def parse_string(self, metadata: dict) -> str:
def to_string(self, metadata: dict) -> str:
data = {k: v for _, k, v in metadata}
width, height = eval(data['resolution'])
sampler = data['sampler']
scheduler = data['scheduler']
if sampler in SAMPLERS and SAMPLERS[sampler] != '':
sampler = SAMPLERS[sampler]
if sampler not in CIVITAI_NO_KARRAS and scheduler == 'karras':
@ -451,6 +460,7 @@ class A1111MetadataParser(MetadataParser):
self.fooocus_to_a1111['performance']: data['performance'],
self.fooocus_to_a1111['scheduler']: scheduler,
self.fooocus_to_a1111['vae']: Path(data['vae']).stem,
# workaround for multiline prompts
self.fooocus_to_a1111['raw_prompt']: self.raw_prompt,
self.fooocus_to_a1111['raw_negative_prompt']: self.raw_negative_prompt,
@ -462,7 +472,7 @@ class A1111MetadataParser(MetadataParser):
self.fooocus_to_a1111['refiner_model_hash']: self.refiner_model_hash
}
for key in ['adaptive_cfg', 'overwrite_switch', 'refiner_swap_method', 'freeu']:
for key in ['adaptive_cfg', 'clip_skip', 'overwrite_switch', 'refiner_swap_method', 'freeu']:
if key in data:
generation_params[self.fooocus_to_a1111[key]] = data[key]
@ -491,28 +501,35 @@ class A1111MetadataParser(MetadataParser):
negative_prompt_text = f"\nNegative prompt: {negative_prompt_resolved}" if negative_prompt_resolved else ""
return f"{positive_prompt_resolved}{negative_prompt_text}\n{generation_params_text}".strip()
@staticmethod
def add_extension_to_filename(data, filenames, key):
for filename in filenames:
path = Path(filename)
if data[key] == path.stem:
data[key] = filename
break
class FooocusMetadataParser(MetadataParser):
def get_scheme(self) -> MetadataScheme:
return MetadataScheme.FOOOCUS
def parse_json(self, metadata: dict) -> dict:
model_filenames = modules.config.model_filenames.copy()
lora_filenames = modules.config.lora_filenames.copy()
self.remove_special_loras(lora_filenames)
def to_json(self, metadata: dict) -> dict:
for key, value in metadata.items():
if value in ['', 'None']:
continue
if key in ['base_model', 'refiner_model']:
metadata[key] = self.replace_value_with_filename(key, value, model_filenames)
metadata[key] = self.replace_value_with_filename(key, value, modules.config.model_filenames)
elif key.startswith('lora_combined_'):
metadata[key] = self.replace_value_with_filename(key, value, lora_filenames)
metadata[key] = self.replace_value_with_filename(key, value, modules.config.lora_filenames)
elif key == 'vae':
metadata[key] = self.replace_value_with_filename(key, value, modules.config.vae_filenames)
else:
continue
return metadata
def parse_string(self, metadata: list) -> str:
def to_string(self, metadata: list) -> str:
for li, (label, key, value) in enumerate(metadata):
# remove model folder paths from metadata
if key.startswith('lora_combined_'):
@ -533,6 +550,7 @@ class FooocusMetadataParser(MetadataParser):
res['refiner_model'] = self.refiner_model_name
res['refiner_model_hash'] = self.refiner_model_hash
res['vae'] = self.vae_name
res['loras'] = self.loras
if modules.config.metadata_created_by != '':
@ -551,6 +569,8 @@ class FooocusMetadataParser(MetadataParser):
elif value == path.stem:
return filename
return None
def get_metadata_parser(metadata_scheme: MetadataScheme) -> MetadataParser:
match metadata_scheme:

View File

@ -14,6 +14,8 @@ def load_file_from_url(
Returns the path to the downloaded file.
"""
domain = os.environ.get("HF_MIRROR", "https://huggingface.co").rstrip('/')
url = str.replace(url, "https://huggingface.co", domain, 1)
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)

View File

@ -51,6 +51,8 @@ def patched_register_schedule(self, given_betas=None, beta_schedule="linear", ti
self.linear_end = linear_end
sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32)
self.set_sigmas(sigmas)
alphas_cumprod = torch.tensor(alphas_cumprod, dtype=torch.float32)
self.set_alphas_cumprod(alphas_cumprod)
return

View File

@ -21,13 +21,13 @@ def get_current_html_path(output_format=None):
return html_name
def log(img, metadata, metadata_parser: MetadataParser | None = None, output_format=None) -> str:
def log(img, metadata, metadata_parser: MetadataParser | None = None, output_format=None, task=None) -> str:
path_outputs = modules.config.temp_path if args_manager.args.disable_image_log else modules.config.path_outputs
output_format = output_format if output_format else modules.config.default_output_format
date_string, local_temp_filename, only_name = generate_temp_filename(folder=path_outputs, extension=output_format)
os.makedirs(os.path.dirname(local_temp_filename), exist_ok=True)
parsed_parameters = metadata_parser.parse_string(metadata.copy()) if metadata_parser is not None else ''
parsed_parameters = metadata_parser.to_string(metadata.copy()) if metadata_parser is not None else ''
image = Image.fromarray(img)
if output_format == OutputFormat.PNG.value:
@ -111,9 +111,15 @@ def log(img, metadata, metadata_parser: MetadataParser | None = None, output_for
for label, key, value in metadata:
value_txt = str(value).replace('\n', ' </br> ')
item += f"<tr><td class='label'>{label}</td><td class='value'>{value_txt}</td></tr>\n"
if task is not None and 'positive' in task and 'negative' in task:
full_prompt_details = f"""<details><summary>Positive</summary>{', '.join(task['positive'])}</details>
<details><summary>Negative</summary>{', '.join(task['negative'])}</details>"""
item += f"<tr><td class='label'>Full raw prompt</td><td class='value'>{full_prompt_details}</td></tr>\n"
item += "</table>"
js_txt = urllib.parse.quote(json.dumps({k: v for _, k, v in metadata}, indent=0), safe='')
js_txt = urllib.parse.quote(json.dumps({k: v for _, k, v, in metadata}, indent=0), safe='')
item += f"</br><button onclick=\"to_clipboard('{js_txt}')\">Copy to Clipboard</button>"
item += "</td>"

View File

@ -3,6 +3,7 @@ import ldm_patched.modules.samplers
import ldm_patched.modules.model_management
from collections import namedtuple
from ldm_patched.contrib.external_align_your_steps import AlignYourStepsScheduler
from ldm_patched.contrib.external_custom_sampler import SDTurboScheduler
from ldm_patched.k_diffusion import sampling as k_diffusion_sampling
from ldm_patched.modules.samplers import normal_scheduler, simple_scheduler, ddim_scheduler
@ -174,7 +175,10 @@ def calculate_sigmas_scheduler_hacked(model, scheduler_name, steps):
elif scheduler_name == "sgm_uniform":
sigmas = normal_scheduler(model, steps, sgm=True)
elif scheduler_name == "turbo":
sigmas = SDTurboScheduler().get_sigmas(namedtuple('Patcher', ['model'])(model=model), steps=steps, denoise=1.0)[0]
sigmas = SDTurboScheduler().get_sigmas(model=model, steps=steps, denoise=1.0)[0]
elif scheduler_name == "align_your_steps":
model_type = 'SDXL' if isinstance(model.latent_format, ldm_patched.modules.latent_formats.SDXL) else 'SD1'
sigmas = AlignYourStepsScheduler().get_sigmas(model_type=model_type, steps=steps, denoise=1.0)[0]
else:
raise TypeError("error invalid scheduler")
return sigmas

View File

@ -2,13 +2,12 @@ import os
import re
import json
import math
import modules.config
from modules.util import get_files_from_folder
from modules.extra_utils import get_files_from_folder
from random import Random
# cannot use modules.config - validators causing circular imports
styles_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../sdxl_styles/'))
wildcards_max_bfs_depth = 64
def normalize_key(k):
@ -24,7 +23,6 @@ def normalize_key(k):
styles = {}
styles_files = get_files_from_folder(styles_path, ['.json'])
for x in ['sdxl_styles_fooocus.json',
@ -50,8 +48,13 @@ for styles_file in styles_files:
print(f'Failed to load style file {styles_file}')
style_keys = list(styles.keys())
fooocus_expansion = "Fooocus V2"
legal_style_names = [fooocus_expansion] + style_keys
fooocus_expansion = 'Fooocus V2'
random_style_name = 'Random Style'
legal_style_names = [fooocus_expansion, random_style_name] + style_keys
def get_random_style(rng: Random) -> str:
return rng.choice(list(styles.items()))[0]
def apply_style(style, positive):
@ -59,34 +62,7 @@ def apply_style(style, positive):
return p.replace('{prompt}', positive).splitlines(), n.splitlines()
def apply_wildcards(wildcard_text, rng, i, read_wildcards_in_order):
for _ in range(wildcards_max_bfs_depth):
placeholders = re.findall(r'__([\w-]+)__', wildcard_text)
if len(placeholders) == 0:
return wildcard_text
print(f'[Wildcards] processing: {wildcard_text}')
for placeholder in placeholders:
try:
matches = [x for x in modules.config.wildcard_filenames if os.path.splitext(os.path.basename(x))[0] == placeholder]
words = open(os.path.join(modules.config.path_wildcards, matches[0]), encoding='utf-8').read().splitlines()
words = [x for x in words if x != '']
assert len(words) > 0
if read_wildcards_in_order:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', words[i % len(words)], 1)
else:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', rng.choice(words), 1)
except:
print(f'[Wildcards] Warning: {placeholder}.txt missing or empty. '
f'Using "{placeholder}" as a normal word.')
wildcard_text = wildcard_text.replace(f'__{placeholder}__', placeholder)
print(f'[Wildcards] {wildcard_text}')
print(f'[Wildcards] BFS stack overflow. Current text: {wildcard_text}')
return wildcard_text
def get_words(arrays, totalMult, index):
def get_words(arrays, total_mult, index):
if len(arrays) == 1:
return [arrays[0].split(',')[index]]
else:
@ -95,7 +71,7 @@ def get_words(arrays, totalMult, index):
index -= index % len(words)
index /= len(words)
index = math.floor(index)
return [word] + get_words(arrays[1:], math.floor(totalMult/len(words)), index)
return [word] + get_words(arrays[1:], math.floor(total_mult / len(words)), index)
def apply_arrays(text, index):

View File

@ -39,7 +39,7 @@ def javascript_html():
head += f'<script type="text/javascript" src="{edit_attention_js_path}"></script>\n'
head += f'<script type="text/javascript" src="{viewer_js_path}"></script>\n'
head += f'<script type="text/javascript" src="{image_viewer_js_path}"></script>\n'
head += f'<meta name="samples-path" content="{samples_path}"></meta>\n'
head += f'<meta name="samples-path" content="{samples_path}">\n'
if args_manager.args.theme:
head += f'<script type="text/javascript">set_theme(\"{args_manager.args.theme}\");</script>\n'

View File

@ -1,4 +1,4 @@
import typing
from pathlib import Path
import numpy as np
import datetime
@ -6,16 +6,28 @@ import random
import math
import os
import cv2
import re
from typing import List, Tuple, AnyStr, NamedTuple
import json
import hashlib
from PIL import Image
import modules.config
import modules.sdxl_styles
from modules.flags import Performance
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
# Regexp compiled once. Matches entries with the following pattern:
# <lora:some_lora:1>
# <lora:aNotherLora:-1.6>
LORAS_PROMPT_PATTERN = re.compile(r"(<lora:([^:]+):([+-]?(?:\d+(?:\.\d*)?|\.\d+))>)", re.X)
HASH_SHA256_LENGTH = 10
def erode_or_dilate(x, k):
k = int(k)
if k > 0:
@ -163,25 +175,6 @@ def generate_temp_filename(folder='./outputs/', extension='png'):
return date_string, os.path.abspath(result), filename
def get_files_from_folder(folder_path, extensions=None, name_filter=None):
if not os.path.isdir(folder_path):
raise ValueError("Folder path is not a valid directory.")
filenames = []
for root, dirs, files in os.walk(folder_path, topdown=False):
relative_path = os.path.relpath(root, folder_path)
if relative_path == ".":
relative_path = ""
for filename in sorted(files, key=lambda s: s.casefold()):
_, file_extension = os.path.splitext(filename)
if (extensions is None or file_extension.lower() in extensions) and (name_filter is None or name_filter in _):
path = os.path.join(relative_path, filename)
filenames.append(path)
return filenames
def sha256(filename, use_addnet_hash=False, length=HASH_SHA256_LENGTH):
print(f"Calculating sha256 for {filename}: ", end='')
if use_addnet_hash:
@ -355,7 +348,7 @@ def extract_styles_from_prompt(prompt, negative_prompt):
return list(reversed(extracted)), real_prompt, negative_prompt
class PromptStyle(typing.NamedTuple):
class PromptStyle(NamedTuple):
name: str
prompt: str
negative_prompt: str
@ -370,7 +363,18 @@ def is_json(data: str) -> bool:
return True
def get_filname_by_stem(lora_name, filenames: List[str]) -> str | None:
for filename in filenames:
path = Path(filename)
if lora_name == path.stem:
return filename
return None
def get_file_from_folder_list(name, folders):
if not isinstance(folders, list):
folders = [folders]
for folder in folders:
filename = os.path.abspath(os.path.realpath(os.path.join(folder, name)))
if os.path.isfile(filename):
@ -379,10 +383,6 @@ def get_file_from_folder_list(name, folders):
return os.path.abspath(os.path.realpath(os.path.join(folders[0], name)))
def ordinal_suffix(number: int) -> str:
return 'th' if 10 <= number % 100 <= 20 else {1: 'st', 2: 'nd', 3: 'rd'}.get(number % 10, 'th')
def makedirs_with_log(path):
try:
os.makedirs(path, exist_ok=True)
@ -390,5 +390,132 @@ def makedirs_with_log(path):
print(f'Directory {path} could not be created, reason: {error}')
def get_enabled_loras(loras: list) -> list:
return [[lora[1], lora[2]] for lora in loras if lora[0]]
def get_enabled_loras(loras: list, remove_none=True) -> list:
return [(lora[1], lora[2]) for lora in loras if lora[0] and (lora[1] != 'None' if remove_none else True)]
def parse_lora_references_from_prompt(prompt: str, loras: List[Tuple[AnyStr, float]], loras_limit: int = 5,
skip_file_check=False, prompt_cleanup=True, deduplicate_loras=True,
lora_filenames=None) -> tuple[List[Tuple[AnyStr, float]], str]:
if lora_filenames is None:
lora_filenames = []
found_loras = []
prompt_without_loras = ''
cleaned_prompt = ''
for token in prompt.split(','):
matches = LORAS_PROMPT_PATTERN.findall(token)
if len(matches) == 0:
prompt_without_loras += token + ', '
continue
for match in matches:
lora_name = match[1] + '.safetensors'
if not skip_file_check:
lora_name = get_filname_by_stem(match[1], lora_filenames)
if lora_name is not None:
found_loras.append((lora_name, float(match[2])))
token = token.replace(match[0], '')
prompt_without_loras += token + ', '
if prompt_without_loras != '':
cleaned_prompt = prompt_without_loras[:-2]
if prompt_cleanup:
cleaned_prompt = cleanup_prompt(prompt_without_loras)
new_loras = []
lora_names = [lora[0] for lora in loras]
for found_lora in found_loras:
if deduplicate_loras and (found_lora[0] in lora_names or found_lora in new_loras):
continue
new_loras.append(found_lora)
if len(new_loras) == 0:
return loras, cleaned_prompt
updated_loras = []
for lora in loras + new_loras:
if lora[0] != "None":
updated_loras.append(lora)
return updated_loras[:loras_limit], cleaned_prompt
def remove_performance_lora(filenames: list, performance: Performance | None):
loras_without_performance = filenames.copy()
if performance is None:
return loras_without_performance
performance_lora = performance.lora_filename()
for filename in filenames:
path = Path(filename)
if performance_lora == path.name:
loras_without_performance.remove(filename)
return loras_without_performance
def cleanup_prompt(prompt):
prompt = re.sub(' +', ' ', prompt)
prompt = re.sub(',+', ',', prompt)
cleaned_prompt = ''
for token in prompt.split(','):
token = token.strip()
if token == '':
continue
cleaned_prompt += token + ', '
return cleaned_prompt[:-2]
def apply_wildcards(wildcard_text, rng, i, read_wildcards_in_order) -> str:
for _ in range(modules.config.wildcards_max_bfs_depth):
placeholders = re.findall(r'__([\w-]+)__', wildcard_text)
if len(placeholders) == 0:
return wildcard_text
print(f'[Wildcards] processing: {wildcard_text}')
for placeholder in placeholders:
try:
matches = [x for x in modules.config.wildcard_filenames if os.path.splitext(os.path.basename(x))[0] == placeholder]
words = open(os.path.join(modules.config.path_wildcards, matches[0]), encoding='utf-8').read().splitlines()
words = [x for x in words if x != '']
assert len(words) > 0
if read_wildcards_in_order:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', words[i % len(words)], 1)
else:
wildcard_text = wildcard_text.replace(f'__{placeholder}__', rng.choice(words), 1)
except:
print(f'[Wildcards] Warning: {placeholder}.txt missing or empty. '
f'Using "{placeholder}" as a normal word.')
wildcard_text = wildcard_text.replace(f'__{placeholder}__', placeholder)
print(f'[Wildcards] {wildcard_text}')
print(f'[Wildcards] BFS stack overflow. Current text: {wildcard_text}')
return wildcard_text
def get_image_size_info(image: np.ndarray, aspect_ratios: list) -> str:
try:
image = Image.fromarray(np.uint8(image))
width, height = image.size
ratio = round(width / height, 2)
gcd = math.gcd(width, height)
lcm_ratio = f'{width // gcd}:{height // gcd}'
size_info = f'Image Size: {width} x {height}, Ratio: {ratio}, {lcm_ratio}'
closest_ratio = min(aspect_ratios, key=lambda x: abs(ratio - float(x.split('*')[0]) / float(x.split('*')[1])))
recommended_width, recommended_height = map(int, closest_ratio.split('*'))
recommended_ratio = round(recommended_width / recommended_height, 2)
recommended_gcd = math.gcd(recommended_width, recommended_height)
recommended_lcm_ratio = f'{recommended_width // recommended_gcd}:{recommended_height // recommended_gcd}'
size_info = f'{width} x {height}, {ratio}, {lcm_ratio}'
size_info += f'\n{recommended_width} x {recommended_height}, {recommended_ratio}, {recommended_lcm_ratio}'
return size_info
except Exception as e:
return f'Error reading image: {e}'

1
presets/.gitignore vendored
View File

@ -2,5 +2,6 @@
!anime.json
!default.json
!lcm.json
!playground_v2.5.json
!realistic.json
!sai.json

View File

@ -0,0 +1,49 @@
{
"default_model": "playground-v2.5-1024px-aesthetic.fp16.safetensors",
"default_refiner": "None",
"default_refiner_switch": 0.5,
"default_loras": [
[
true,
"None",
1.0
],
[
true,
"None",
1.0
],
[
true,
"None",
1.0
],
[
true,
"None",
1.0
],
[
true,
"None",
1.0
]
],
"default_cfg_scale": 2.0,
"default_sample_sharpness": 2.0,
"default_sampler": "dpmpp_2m",
"default_scheduler": "edm_playground_v2.5",
"default_performance": "Speed",
"default_prompt": "",
"default_prompt_negative": "",
"default_styles": [
"Fooocus V2"
],
"default_aspect_ratio": "1024*1024",
"checkpoint_downloads": {
"playground-v2.5-1024px-aesthetic.fp16.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/playground-v2.5-1024px-aesthetic.fp16.safetensors"
},
"embeddings_downloads": {},
"lora_downloads": {},
"previous_default_models": []
}

View File

@ -368,26 +368,38 @@ A safer way is just to try "run_anime.bat" or "run_realistic.bat" - they should
entry_with_update.py [-h] [--listen [IP]] [--port PORT]
[--disable-header-check [ORIGIN]]
[--web-upload-size WEB_UPLOAD_SIZE]
[--hf-mirror HF_MIRROR]
[--external-working-path PATH [PATH ...]]
[--output-path OUTPUT_PATH] [--temp-path TEMP_PATH]
[--output-path OUTPUT_PATH]
[--temp-path TEMP_PATH]
[--cache-path CACHE_PATH] [--in-browser]
[--disable-in-browser] [--gpu-device-id DEVICE_ID]
[--disable-in-browser]
[--gpu-device-id DEVICE_ID]
[--async-cuda-allocation | --disable-async-cuda-allocation]
[--disable-attention-upcast] [--all-in-fp32 | --all-in-fp16]
[--disable-attention-upcast]
[--all-in-fp32 | --all-in-fp16]
[--unet-in-bf16 | --unet-in-fp16 | --unet-in-fp8-e4m3fn | --unet-in-fp8-e5m2]
[--vae-in-fp16 | --vae-in-fp32 | --vae-in-bf16]
[--vae-in-fp16 | --vae-in-fp32 | --vae-in-bf16]
[--vae-in-cpu]
[--clip-in-fp8-e4m3fn | --clip-in-fp8-e5m2 | --clip-in-fp16 | --clip-in-fp32]
[--directml [DIRECTML_DEVICE]] [--disable-ipex-hijack]
[--directml [DIRECTML_DEVICE]]
[--disable-ipex-hijack]
[--preview-option [none,auto,fast,taesd]]
[--attention-split | --attention-quad | --attention-pytorch]
[--disable-xformers]
[--always-gpu | --always-high-vram | --always-normal-vram |
--always-low-vram | --always-no-vram | --always-cpu [CPU_NUM_THREADS]]
[--always-offload-from-vram] [--disable-server-log]
[--debug-mode] [--is-windows-embedded-python]
[--disable-server-info] [--share] [--preset PRESET]
[--language LANGUAGE] [--disable-offload-from-vram]
[--theme THEME] [--disable-image-log]
[--always-gpu | --always-high-vram | --always-normal-vram |
--always-low-vram | --always-no-vram | --always-cpu [CPU_NUM_THREADS]]
[--always-offload-from-vram]
[--pytorch-deterministic] [--disable-server-log]
[--debug-mode] [--is-windows-embedded-python]
[--disable-server-info] [--multi-user] [--share]
[--preset PRESET] [--disable-preset-selection]
[--language LANGUAGE]
[--disable-offload-from-vram] [--theme THEME]
[--disable-image-log] [--disable-analytics]
[--disable-metadata] [--disable-preset-download]
[--enable-describe-uov-image]
[--always-download-new-model]
```
## Advanced Features

View File

@ -1,5 +1,2 @@
torch==2.0.1
torchvision==0.15.2
torchaudio==2.0.2
torchtext==0.15.2
torchdata==0.6.1
torch==2.1.0
torchvision==0.16.0

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

4
tests/__init__.py Normal file
View File

@ -0,0 +1,4 @@
import sys
import pathlib
sys.path.append(pathlib.Path(f'{__file__}/../modules').parent.resolve())

74
tests/test_extra_utils.py Normal file
View File

@ -0,0 +1,74 @@
import numbers
import os
import unittest
import modules.flags
from modules import extra_utils
class TestUtils(unittest.TestCase):
def test_try_eval_env_var(self):
test_cases = [
{
"input": ("foo", str),
"output": "foo"
},
{
"input": ("1", int),
"output": 1
},
{
"input": ("1.0", float),
"output": 1.0
},
{
"input": ("1", numbers.Number),
"output": 1
},
{
"input": ("1.0", numbers.Number),
"output": 1.0
},
{
"input": ("true", bool),
"output": True
},
{
"input": ("True", bool),
"output": True
},
{
"input": ("false", bool),
"output": False
},
{
"input": ("False", bool),
"output": False
},
{
"input": ("True", str),
"output": "True"
},
{
"input": ("False", str),
"output": "False"
},
{
"input": ("['a', 'b', 'c']", list),
"output": ['a', 'b', 'c']
},
{
"input": ("{'a':1}", dict),
"output": {'a': 1}
},
{
"input": ("('foo', 1)", tuple),
"output": ('foo', 1)
}
]
for test in test_cases:
value, expected_type = test["input"]
expected = test["output"]
actual = extra_utils.try_eval_env_var(value, expected_type)
self.assertEqual(expected, actual)

137
tests/test_utils.py Normal file
View File

@ -0,0 +1,137 @@
import os
import unittest
import modules.flags
from modules import util
class TestUtils(unittest.TestCase):
def test_can_parse_tokens_with_lora(self):
test_cases = [
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4>, cool <lora:you-lora:0.2>", [], 5, True),
"output": (
[('hey-lora.safetensors', 0.4), ('you-lora.safetensors', 0.2)], 'some prompt, very cool, cool'),
},
# Test can not exceed limit
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4>, cool <lora:you-lora:0.2>", [], 1, True),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt, very cool, cool'
),
},
# test Loras from UI take precedence over prompt
{
"input": (
"some prompt, very cool, <lora:l1:0.4>, <lora:l2:-0.2>, <lora:l3:0.3>, <lora:l4:0.5>, <lora:l6:0.24>, <lora:l7:0.1>",
[("hey-lora.safetensors", 0.4)],
5,
True
),
"output": (
[
('hey-lora.safetensors', 0.4),
('l1.safetensors', 0.4),
('l2.safetensors', -0.2),
('l3.safetensors', 0.3),
('l4.safetensors', 0.5)
],
'some prompt, very cool'
)
},
# test correct matching even if there is no space separating loras in the same token
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4><lora:you-lora:0.2>", [], 3, True),
"output": (
[
('hey-lora.safetensors', 0.4),
('you-lora.safetensors', 0.2)
],
'some prompt, very cool'
),
},
# test deduplication, also selected loras are never overridden with loras in prompt
{
"input": (
"some prompt, very cool, <lora:hey-lora:0.4><lora:hey-lora:0.4><lora:you-lora:0.2>",
[('you-lora.safetensors', 0.3)],
3,
True
),
"output": (
[
('you-lora.safetensors', 0.3),
('hey-lora.safetensors', 0.4)
],
'some prompt, very cool'
),
},
{
"input": ("<lora:foo:1..2>, <lora:bar:.>, <test:1.0>, <lora:baz:+> and <lora:quux:>", [], 6, True),
"output": (
[],
'<lora:foo:1..2>, <lora:bar:.>, <test:1.0>, <lora:baz:+> and <lora:quux:>'
)
}
]
for test in test_cases:
prompt, loras, loras_limit, skip_file_check = test["input"]
expected = test["output"]
actual = util.parse_lora_references_from_prompt(prompt, loras, loras_limit=loras_limit,
skip_file_check=skip_file_check)
self.assertEqual(expected, actual)
def test_can_parse_tokens_and_strip_performance_lora(self):
lora_filenames = [
'hey-lora.safetensors',
modules.flags.PerformanceLoRA.EXTREME_SPEED.value,
modules.flags.PerformanceLoRA.LIGHTNING.value,
os.path.join('subfolder', modules.flags.PerformanceLoRA.HYPER_SD.value)
]
test_cases = [
{
"input": ("some prompt, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.QUALITY),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.SPEED),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:sdxl_lcm_lora:1>, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.EXTREME_SPEED),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:sdxl_lightning_4step_lora:1>, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.LIGHTNING),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:sdxl_hyper_sd_4step_lora:1>, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.HYPER_SD),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
}
]
for test in test_cases:
prompt, loras, loras_limit, skip_file_check, performance = test["input"]
lora_filenames = modules.util.remove_performance_lora(lora_filenames, performance)
expected = test["output"]
actual = util.parse_lora_references_from_prompt(prompt, loras, loras_limit=loras_limit, lora_filenames=lora_filenames)
self.assertEqual(expected, actual)

View File

@ -1,3 +1,41 @@
# [2.4.3](https://github.com/lllyasviel/Fooocus/releases/tag/v2.4.3)
* Fix alphas_cumprod setter for TCD sampler
* Add parser for env var strings to expected config value types to allow override of all non-path config keys
# [2.4.2](https://github.com/lllyasviel/Fooocus/releases/tag/v2.4.2)
* Fix some small bugs (tcd scheduler when gamma is 0, chown in Dockerfile, update cmd args in readme, translation for aspect ratios, vae default after file reload)
* Fix performance LoRA replacement when data is loaded from history log and inline prompt
* Add support and preset for playground v2.5 (only works with performance Quality or Speed, use with scheduler edm_playground_v2)
* Make textboxes (incl. positive prompt) resizable
* Hide intermediate images when performance of Gradio would bottleneck the generation process (Extreme Speed, Lightning, Hyper-SD)
# [2.4.1](https://github.com/lllyasviel/Fooocus/releases/tag/v2.4.1)
* Fix some small bugs (e.g. adjust clip skip default value from 1 to 2, add type check to aspect ratios js update function)
* Add automated docker build on push to main, tagged with `edge`. See [available docker images](https://github.com/lllyasviel/Fooocus/pkgs/container/fooocus).
# [2.4.0](https://github.com/lllyasviel/Fooocus/releases/tag/v2.4.0)
* Change settings tab elements to be more compact
* Add clip skip slider
* Add select for custom VAE
* Add new style "Random Style"
* Update default anime model to animaPencilXL_v310
* Add button to reconnect the UI after Fooocus crashed without having to configure everything again (no page reload required)
* Add performance "hyper-sd" (based on [Hyper-SDXL 4 step LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-4steps-lora.safetensors))
* Add [AlignYourSteps](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/) scheduler by Nvidia, see
* Add [TCD](https://github.com/jabir-zheng/TCD) sampler and scheduler (based on sgm_uniform)
* Add NSFW image censoring (disables intermediate image preview while generating). Set config value `default_black_out_nsfw` to True to always enable.
* Add argument `--enable-describe-uov-image` to automatically describe uploaded images for upscaling
* Add inline lora prompt references with subfolder support, example prompt: `colorful bird <lora:toucan:1.2>`
* Add size and aspect ratio recommendation on image describe
* Add inpaint brush color picker, helpful when image and mask brush have the same color
* Add automated Docker image build using Github Actions on each release.
* Add full raw prompts to history logs
* Change code ownership from @lllyasviel to @mashb1t for automated issue / MR notification
# [2.3.1](https://github.com/lllyasviel/Fooocus/releases/tag/2.3.1)
* Remove positive prompt from anime prefix to not reset prompt after switching presets

126
webui.py
View File

@ -112,10 +112,10 @@ with shared.gradio_root:
gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain', visible=True, height=768,
elem_classes=['resizable_area', 'main_view', 'final_gallery', 'image_gallery'],
elem_id='final_gallery')
with gr.Row(elem_classes='type_row'):
with gr.Row():
with gr.Column(scale=17):
prompt = gr.Textbox(show_label=False, placeholder="Type prompt here or paste parameters.", elem_id='positive_prompt',
container=False, autofocus=True, elem_classes='type_row', lines=1024)
autofocus=True, lines=3)
default_prompt = modules.config.default_prompt
if isinstance(default_prompt, str) and default_prompt != '':
@ -123,8 +123,9 @@ with shared.gradio_root:
with gr.Column(scale=3, min_width=0):
generate_button = gr.Button(label="Generate", value="Generate", elem_classes='type_row', elem_id='generate_button', visible=True)
reset_button = gr.Button(label="Reconnect", value="Reconnect", elem_classes='type_row', elem_id='reset_button', visible=False)
load_parameter_button = gr.Button(label="Load Parameters", value="Load Parameters", elem_classes='type_row', elem_id='load_parameter_button', visible=False)
skip_button = gr.Button(label="Skip", value="Skip", elem_classes='type_row_half', visible=False)
skip_button = gr.Button(label="Skip", value="Skip", elem_classes='type_row_half', elem_id='skip_button', visible=False)
stop_button = gr.Button(label="Stop", value="Stop", elem_classes='type_row_half', elem_id='stop_button', visible=False)
def stop_clicked(currentTask):
@ -151,7 +152,7 @@ with shared.gradio_root:
with gr.TabItem(label='Upscale or Variation') as uov_tab:
with gr.Row():
with gr.Column():
uov_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy')
uov_input_image = grh.Image(label='Image', source='upload', type='numpy', show_label=False)
with gr.Column():
uov_method = gr.Radio(label='Upscale or Variation:', choices=flags.uov_list, value=flags.disabled)
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/390" target="_blank">\U0001F4D4 Document</a>')
@ -200,7 +201,7 @@ with shared.gradio_root:
queue=False, show_progress=False)
with gr.TabItem(label='Inpaint or Outpaint') as inpaint_tab:
with gr.Row():
inpaint_input_image = grh.Image(label='Drag inpaint or outpaint image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas')
inpaint_input_image = grh.Image(label='Image', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas', show_label=False)
inpaint_mask_image = grh.Image(label='Mask Upload', source='upload', type='numpy', height=500, visible=False)
with gr.Row():
@ -213,17 +214,26 @@ with shared.gradio_root:
with gr.TabItem(label='Describe') as desc_tab:
with gr.Row():
with gr.Column():
desc_input_image = grh.Image(label='Drag any image to here', source='upload', type='numpy')
desc_input_image = grh.Image(label='Image', source='upload', type='numpy', show_label=False)
with gr.Column():
desc_method = gr.Radio(
label='Content Type',
choices=[flags.desc_type_photo, flags.desc_type_anime],
value=flags.desc_type_photo)
desc_btn = gr.Button(value='Describe this Image into Prompt')
desc_image_size = gr.Textbox(label='Image Size and Recommended Size', elem_id='desc_image_size', visible=False)
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/1363" target="_blank">\U0001F4D4 Document</a>')
with gr.TabItem(label='Metadata') as load_tab:
def trigger_show_image_properties(image):
value = modules.util.get_image_size_info(image, modules.flags.sdxl_aspect_ratios)
return gr.update(value=value, visible=True)
desc_input_image.upload(trigger_show_image_properties, inputs=desc_input_image,
outputs=desc_image_size, show_progress=False, queue=False)
with gr.TabItem(label='Metadata') as metadata_tab:
with gr.Column():
metadata_input_image = grh.Image(label='Drag any image generated by Fooocus here', source='upload', type='filepath')
metadata_input_image = grh.Image(label='For images created by Fooocus', source='upload', type='filepath')
metadata_json = gr.JSON(label='Metadata')
metadata_import_button = gr.Button(value='Apply Metadata')
@ -254,25 +264,34 @@ with shared.gradio_root:
inpaint_tab.select(lambda: 'inpaint', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
ip_tab.select(lambda: 'ip', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
desc_tab.select(lambda: 'desc', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
metadata_tab.select(lambda: 'metadata', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
with gr.Column(scale=1, visible=modules.config.default_advanced_checkbox) as advanced_column:
with gr.Tab(label='Setting'):
if not args_manager.args.disable_preset_selection:
preset_selection = gr.Radio(label='Preset',
choices=modules.config.available_presets,
value=args_manager.args.preset if args_manager.args.preset else "initial",
interactive=True)
preset_selection = gr.Dropdown(label='Preset',
choices=modules.config.available_presets,
value=args_manager.args.preset if args_manager.args.preset else "initial",
interactive=True)
performance_selection = gr.Radio(label='Performance',
choices=flags.Performance.list(),
value=modules.config.default_performance)
aspect_ratios_selection = gr.Radio(label='Aspect Ratios', choices=modules.config.available_aspect_ratios,
value=modules.config.default_aspect_ratio, info='width × height',
elem_classes='aspect_ratios')
value=modules.config.default_performance,
elem_classes=['performance_selection'])
with gr.Accordion(label='Aspect Ratios', open=False, elem_id='aspect_ratios_accordion') as aspect_ratios_accordion:
aspect_ratios_selection = gr.Radio(label='Aspect Ratios', show_label=False,
choices=modules.config.available_aspect_ratios_labels,
value=modules.config.default_aspect_ratio,
info='width × height',
elem_classes='aspect_ratios')
aspect_ratios_selection.change(lambda x: None, inputs=aspect_ratios_selection, queue=False, show_progress=False, _js='(x)=>{refresh_aspect_ratios_label(x);}')
shared.gradio_root.load(lambda x: None, inputs=aspect_ratios_selection, queue=False, show_progress=False, _js='(x)=>{refresh_aspect_ratios_label(x);}')
image_number = gr.Slider(label='Image Number', minimum=1, maximum=modules.config.default_max_image_number, step=1, value=modules.config.default_image_number)
output_format = gr.Radio(label='Output Format',
choices=flags.OutputFormat.list(),
value=modules.config.default_output_format)
choices=flags.OutputFormat.list(),
value=modules.config.default_output_format)
negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.",
info='Describing what you do not want to see.', lines=2,
@ -402,10 +421,15 @@ with shared.gradio_root:
value=modules.config.default_cfg_tsnr,
info='Enabling Fooocus\'s implementation of CFG mimicking for TSNR '
'(effective when real CFG > mimicked CFG).')
clip_skip = gr.Slider(label='CLIP Skip', minimum=1, maximum=flags.clip_skip_max, step=1,
value=modules.config.default_clip_skip,
info='Bypass CLIP layers to avoid overfitting (use 1 to not skip any layers, 2 is recommended).')
sampler_name = gr.Dropdown(label='Sampler', choices=flags.sampler_list,
value=modules.config.default_sampler)
scheduler_name = gr.Dropdown(label='Scheduler', choices=flags.scheduler_list,
value=modules.config.default_scheduler)
vae_name = gr.Dropdown(label='VAE', choices=[modules.flags.default_vae] + modules.config.vae_filenames,
value=modules.config.default_vae, show_label=True)
generate_image_grid = gr.Checkbox(label='Generate Image Grid for Each Batch',
info='(Experimental) This may cause performance problems on some computers and certain internet conditions.',
@ -433,17 +457,26 @@ with shared.gradio_root:
overwrite_upscale_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Upscale"',
minimum=-1, maximum=1.0, step=0.001, value=-1,
info='Set as negative number to disable. For developer debugging.')
disable_preview = gr.Checkbox(label='Disable Preview', value=False,
disable_preview = gr.Checkbox(label='Disable Preview', value=modules.config.default_black_out_nsfw,
interactive=not modules.config.default_black_out_nsfw,
info='Disable preview during generation.')
disable_intermediate_results = gr.Checkbox(label='Disable Intermediate Results',
value=modules.config.default_performance == flags.Performance.EXTREME_SPEED.value,
interactive=modules.config.default_performance != flags.Performance.EXTREME_SPEED.value,
disable_intermediate_results = gr.Checkbox(label='Disable Intermediate Results',
value=flags.Performance.has_restricted_features(modules.config.default_performance),
info='Disable intermediate results during generation, only show final gallery.')
disable_seed_increment = gr.Checkbox(label='Disable seed increment',
info='Disable automatic seed increment when image number is > 1.',
value=False)
read_wildcards_in_order = gr.Checkbox(label="Read wildcards in order", value=False)
black_out_nsfw = gr.Checkbox(label='Black Out NSFW',
value=modules.config.default_black_out_nsfw,
interactive=not modules.config.default_black_out_nsfw,
info='Use black image if NSFW is detected.')
black_out_nsfw.change(lambda x: gr.update(value=x, interactive=not x),
inputs=black_out_nsfw, outputs=disable_preview, queue=False,
show_progress=False)
if not args_manager.args.disable_metadata:
save_metadata_to_images = gr.Checkbox(label='Save Metadata to Images', value=modules.config.default_save_metadata_to_images,
info='Adds parameters to generated images allowing manual regeneration.')
@ -502,13 +535,20 @@ with shared.gradio_root:
inpaint_mask_upload_checkbox = gr.Checkbox(label='Enable Mask Upload', value=False)
invert_mask_checkbox = gr.Checkbox(label='Invert Mask', value=False)
inpaint_mask_color = gr.ColorPicker(label='Inpaint brush color', value='#FFFFFF', elem_id='inpaint_brush_color')
inpaint_ctrls = [debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine,
inpaint_strength, inpaint_respective_field,
inpaint_mask_upload_checkbox, invert_mask_checkbox, inpaint_erode_or_dilate]
inpaint_mask_upload_checkbox.change(lambda x: gr.update(visible=x),
inputs=inpaint_mask_upload_checkbox,
outputs=inpaint_mask_image, queue=False, show_progress=False)
inputs=inpaint_mask_upload_checkbox,
outputs=inpaint_mask_image, queue=False,
show_progress=False)
inpaint_mask_color.change(lambda x: gr.update(brush_color=x), inputs=inpaint_mask_color,
outputs=inpaint_input_image,
queue=False, show_progress=False)
with gr.Tab(label='FreeU'):
freeu_enabled = gr.Checkbox(label='Enabled', value=False)
@ -528,6 +568,7 @@ with shared.gradio_root:
modules.config.update_files()
results = [gr.update(choices=modules.config.model_filenames)]
results += [gr.update(choices=['None'] + modules.config.model_filenames)]
results += [gr.update(choices=[flags.default_vae] + modules.config.vae_filenames)]
if not args_manager.args.disable_preset_selection:
results += [gr.update(choices=modules.config.available_presets)]
for i in range(modules.config.default_max_lora_number):
@ -535,7 +576,7 @@ with shared.gradio_root:
gr.update(choices=['None'] + modules.config.lora_filenames), gr.update()]
return results
refresh_files_output = [base_model, refiner_model]
refresh_files_output = [base_model, refiner_model, vae_name]
if not args_manager.args.disable_preset_selection:
refresh_files_output += [preset_selection]
refresh_files.click(refresh_files_clicked, [], refresh_files_output + lora_ctrls,
@ -546,9 +587,9 @@ with shared.gradio_root:
load_data_outputs = [advanced_checkbox, image_number, prompt, negative_prompt, style_selections,
performance_selection, overwrite_step, overwrite_switch, aspect_ratios_selection,
overwrite_width, overwrite_height, guidance_scale, sharpness, adm_scaler_positive,
adm_scaler_negative, adm_scaler_end, refiner_swap_method, adaptive_cfg, base_model,
refiner_model, refiner_switch, sampler_name, scheduler_name, seed_random, image_seed,
generate_button, load_parameter_button] + freeu_ctrls + lora_ctrls
adm_scaler_negative, adm_scaler_end, refiner_swap_method, adaptive_cfg, clip_skip,
base_model, refiner_model, refiner_switch, sampler_name, scheduler_name, vae_name,
seed_random, image_seed, generate_button, load_parameter_button] + freeu_ctrls + lora_ctrls
if not args_manager.args.disable_preset_selection:
def preset_selection_change(preset, is_generating):
@ -570,11 +611,11 @@ with shared.gradio_root:
return modules.meta_parser.load_parameter_button_click(json.dumps(preset_prepared), is_generating)
preset_selection.change(preset_selection_change, inputs=[preset_selection, state_is_generating], outputs=load_data_outputs, queue=False, show_progress=True) \
.then(fn=style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False) \
.then(fn=style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False)
performance_selection.change(lambda x: [gr.update(interactive=not flags.Performance.has_restricted_features(x))] * 11 +
[gr.update(visible=not flags.Performance.has_restricted_features(x))] * 1 +
[gr.update(interactive=not flags.Performance.has_restricted_features(x), value=flags.Performance.has_restricted_features(x))] * 1,
[gr.update(value=flags.Performance.has_restricted_features(x))] * 1,
inputs=performance_selection,
outputs=[
guidance_scale, sharpness, adm_scaler_end, adm_scaler_positive,
@ -632,9 +673,9 @@ with shared.gradio_root:
ctrls += [input_image_checkbox, current_tab]
ctrls += [uov_method, uov_input_image]
ctrls += [outpaint_selections, inpaint_input_image, inpaint_additional_prompt, inpaint_mask_image]
ctrls += [disable_preview, disable_intermediate_results, disable_seed_increment]
ctrls += [adm_scaler_positive, adm_scaler_negative, adm_scaler_end, adaptive_cfg]
ctrls += [sampler_name, scheduler_name]
ctrls += [disable_preview, disable_intermediate_results, disable_seed_increment, black_out_nsfw]
ctrls += [adm_scaler_positive, adm_scaler_negative, adm_scaler_end, adaptive_cfg, clip_skip]
ctrls += [sampler_name, scheduler_name, vae_name]
ctrls += [overwrite_step, overwrite_switch, overwrite_width, overwrite_height, overwrite_vary_strength]
ctrls += [overwrite_upscale_strength, mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint]
ctrls += [debugging_cn_preprocessor, skipping_cn_preprocessor, canny_low_threshold, canny_high_threshold]
@ -671,7 +712,7 @@ with shared.gradio_root:
parsed_parameters = {}
else:
metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme)
parsed_parameters = metadata_parser.parse_json(parameters)
parsed_parameters = metadata_parser.to_json(parameters)
return modules.meta_parser.load_parameter_button_click(parsed_parameters, state_is_generating)
@ -688,6 +729,14 @@ with shared.gradio_root:
.then(fn=update_history_link, outputs=history_link) \
.then(fn=lambda: None, _js='playNotification').then(fn=lambda: None, _js='refresh_grid_delayed')
reset_button.click(lambda: [worker.AsyncTask(args=[]), False, gr.update(visible=True, interactive=True)] +
[gr.update(visible=False)] * 6 +
[gr.update(visible=True, value=[])],
outputs=[currentTask, state_is_generating, generate_button,
reset_button, stop_button, skip_button,
progress_html, progress_window, progress_gallery, gallery],
queue=False)
for notification_file in ['notification.ogg', 'notification.mp3']:
if os.path.exists(notification_file):
gr.Audio(interactive=False, value=notification_file, elem_id='audio_notification', visible=False)
@ -705,6 +754,15 @@ with shared.gradio_root:
desc_btn.click(trigger_describe, inputs=[desc_method, desc_input_image],
outputs=[prompt, style_selections], show_progress=True, queue=True)
if args_manager.args.enable_describe_uov_image:
def trigger_uov_describe(mode, img, prompt):
# keep prompt if not empty
if prompt == '':
return trigger_describe(mode, img)
return gr.update(), gr.update()
uov_input_image.upload(trigger_uov_describe, inputs=[desc_method, uov_input_image, prompt],
outputs=[prompt, style_selections], show_progress=True, queue=True)
def dump_default_english_config():
from modules.localization import dump_english_config

8
wildcards/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
*.txt
!animal.txt
!artist.txt
!color.txt
!color_flower.txt
!extended-color.txt
!flower.txt
!nationality.txt