wip: remove ultralytics, always use manual sam for image mask instead of rembg
This commit is contained in:
parent
09e23f5509
commit
8a81993940
|
|
@ -1,120 +1,24 @@
|
|||
import cv2
|
||||
# https://github.com/sail-sg/EditAnything/blob/main/sam2groundingdino_edit.py
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from segment_anything.utils.amg import remove_small_regions
|
||||
|
||||
from extras.GroundingDINO.util.inference import default_groundingdino
|
||||
from extras.adetailer.args import ADetailerArgs
|
||||
from extras.adetailer.script import get_ad_model
|
||||
from extras.adetailer.script import pred_preprocessing
|
||||
from extras.adetailer.ultralytics_predict import ultralytics_predict
|
||||
from extras.inpaint_mask import run_grounded_sam, generate_mask_from_image
|
||||
from extras.inpaint_mask import SAMOptions, generate_mask_from_image
|
||||
|
||||
original_image1 = cv2.imread('cat.webp')
|
||||
original_image = Image.fromarray(original_image1)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
original_image = Image.open('cat.webp')
|
||||
image = np.array(original_image, dtype=np.uint8)
|
||||
|
||||
# predictor = ultralytics_predict
|
||||
#
|
||||
# ad_model = get_ad_model('face_yolov8n.pt')
|
||||
#
|
||||
# kwargs = {}
|
||||
# kwargs["device"] = torch.device('cpu')
|
||||
# kwargs["classes"] = ""
|
||||
#
|
||||
# img2 = Image.fromarray(img)
|
||||
# pred = predictor(ad_model, img2, **kwargs)
|
||||
#
|
||||
# if pred.preview is None:
|
||||
# print('[ADetailer] nothing detected on image')
|
||||
#
|
||||
# args = ADetailerArgs()
|
||||
#
|
||||
# masks = pred_preprocessing(img, pred, args)
|
||||
# merged_masks = np.maximum(*[np.array(mask) for mask in masks])
|
||||
#
|
||||
#
|
||||
# merged_masks_img = Image.fromarray(merged_masks)
|
||||
# merged_masks_img.show()
|
||||
|
||||
sam_prompt = 'eye'
|
||||
sam_model = 'sam_vit_l_0b3195'
|
||||
dino_box_threshold = 0.3
|
||||
dino_text_threshold = 0.25
|
||||
box_erode_or_dilate = 0
|
||||
|
||||
detections, boxes, logits, phrases = default_groundingdino(
|
||||
image=np.array(original_image),
|
||||
caption=sam_prompt,
|
||||
box_threshold=dino_box_threshold,
|
||||
text_threshold=dino_text_threshold
|
||||
sam_options = SAMOptions(
|
||||
dino_prompt='eye',
|
||||
dino_box_threshold=0.3,
|
||||
dino_text_threshold=0.25,
|
||||
box_erode_or_dilate=0,
|
||||
max_num_boxes=2,
|
||||
sam_checkpoint="./models/sam/sam_vit_l.safetensors",
|
||||
model_type="vit_l"
|
||||
)
|
||||
|
||||
# for boxes.xyxy
|
||||
#boxes = run_grounded_sam(img, sam_prompt, box_threshold=dino_box_threshold, text_threshold=dino_text_threshold)
|
||||
#boxes = np.array([[0, 0, img.shape[1], img.shape[0]]]) if len(boxes) == 0 else boxes
|
||||
|
||||
# from PIL import ImageDraw
|
||||
# draw = ImageDraw.Draw(img)
|
||||
# for idx, box in enumerate(boxes.xyxy):
|
||||
# box_list = box.tolist()
|
||||
# if box_erode_or_dilate != 0:
|
||||
# box_list[0] -= box_erode_or_dilate
|
||||
# box_list[1] -= box_erode_or_dilate
|
||||
# box_list[2] += box_erode_or_dilate
|
||||
# box_list[3] += box_erode_or_dilate
|
||||
# draw.rectangle(box_list, fill=128, outline ="red")
|
||||
# img.show()
|
||||
|
||||
H, W = original_image.size[1], original_image.size[0]
|
||||
boxes = boxes * torch.Tensor([W, H, W, H])
|
||||
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
|
||||
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
|
||||
|
||||
|
||||
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
|
||||
|
||||
sam_checkpoint = "./models/sam/sam_vit_l_0b3195.pth"
|
||||
model_type = "vit_l"
|
||||
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
||||
sam.to(device=device)
|
||||
mask_generator = SamAutomaticMaskGenerator(sam)
|
||||
num_boxes = 2
|
||||
|
||||
sam_predictor = SamPredictor(sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device))
|
||||
|
||||
image_np = np.array(original_image, dtype=np.uint8)
|
||||
|
||||
final_m = torch.zeros((image_np.shape[0], image_np.shape[1]))
|
||||
|
||||
if boxes.size(0) > 0:
|
||||
sam_predictor.set_image(image_np)
|
||||
|
||||
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image_np.shape[:2])
|
||||
masks, _, _ = sam_predictor.predict_torch(
|
||||
point_coords=None,
|
||||
point_labels=None,
|
||||
boxes=transformed_boxes.to(device),
|
||||
multimask_output=False,
|
||||
)
|
||||
|
||||
# remove small disconnected regions and holes
|
||||
fine_masks = []
|
||||
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
|
||||
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
|
||||
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
|
||||
masks = torch.from_numpy(masks)
|
||||
|
||||
num_obj = min(len(logits), num_boxes)
|
||||
for obj_ind in range(num_obj):
|
||||
# box = boxes[obj_ind]
|
||||
|
||||
m = masks[obj_ind][0]
|
||||
final_m += m
|
||||
final_m = (final_m > 0).to('cpu').numpy()
|
||||
# print(final_m.max(), final_m.min())
|
||||
mask_image = np.array(np.dstack((final_m, final_m, final_m)) * 255, dtype=np.uint8)
|
||||
mask_image = generate_mask_from_image(image, sam_options=sam_options)
|
||||
|
||||
merged_masks_img = Image.fromarray(mask_image)
|
||||
merged_masks_img.show()
|
||||
|
|
|
|||
|
|
@ -1,47 +1,129 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
from rembg import remove, new_session
|
||||
from segment_anything import sam_model_registry, SamPredictor
|
||||
from segment_anything.utils.amg import remove_small_regions
|
||||
|
||||
from extras.GroundingDINO.util.inference import default_groundingdino
|
||||
|
||||
|
||||
def generate_mask_from_image(image: np.ndarray, mask_model: str, extras: dict, box_erode_or_dilate: int=0, debug_dino: bool=False) -> np.ndarray | None:
|
||||
class SAMOptions:
|
||||
def __init__(self,
|
||||
# GroundingDINO
|
||||
dino_prompt: str = '',
|
||||
dino_box_threshold=0.3,
|
||||
dino_text_threshold=0.25,
|
||||
box_erode_or_dilate=0,
|
||||
|
||||
# SAM
|
||||
max_num_boxes=2,
|
||||
sam_checkpoint="./models/sam/sam_vit_l_0b3195.pth",
|
||||
model_type="vit_l"
|
||||
):
|
||||
self.dino_prompt = dino_prompt
|
||||
self.dino_box_threshold = dino_box_threshold
|
||||
self.dino_text_threshold = dino_text_threshold
|
||||
self.box_erode_or_dilate = box_erode_or_dilate
|
||||
self.max_num_boxes = max_num_boxes
|
||||
self.sam_checkpoint = sam_checkpoint
|
||||
self.model_type = model_type
|
||||
|
||||
|
||||
def optimize_masks(masks: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
removes small disconnected regions and holes
|
||||
"""
|
||||
fine_masks = []
|
||||
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
|
||||
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
|
||||
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
|
||||
return torch.from_numpy(masks)
|
||||
|
||||
|
||||
def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras=None,
|
||||
sam_options: SAMOptions | None = SAMOptions) -> np.ndarray | None:
|
||||
if image is None:
|
||||
return
|
||||
|
||||
if extras is None:
|
||||
extras = {}
|
||||
|
||||
if 'image' in image:
|
||||
image = image['image']
|
||||
|
||||
if mask_model == 'sam':
|
||||
detections, _, _, _ = default_groundingdino(
|
||||
image=image,
|
||||
caption=extras['sam_prompt_text'],
|
||||
box_threshold=extras['box_threshold'],
|
||||
text_threshold=extras['text_threshold']
|
||||
if mask_model != 'sam' and sam_options is None:
|
||||
return remove(
|
||||
image,
|
||||
session=new_session(mask_model, **extras),
|
||||
only_mask=True,
|
||||
**extras
|
||||
)
|
||||
detection_boxes = detections.xyxy
|
||||
# use full image if no box has been found
|
||||
detection_boxes = np.array([[0, 0, image.shape[1], image.shape[0]]]) if len(detection_boxes) == 0 else detection_boxes
|
||||
|
||||
extras['sam_prompt'] = []
|
||||
for idx, box in enumerate(detection_boxes):
|
||||
box_list = box.tolist()
|
||||
if box_erode_or_dilate != 0:
|
||||
box_list[0] -= box_erode_or_dilate
|
||||
box_list[1] -= box_erode_or_dilate
|
||||
box_list[2] += box_erode_or_dilate
|
||||
box_list[3] += box_erode_or_dilate
|
||||
extras['sam_prompt'] += [{"type": "rectangle", "data": box_list}]
|
||||
assert sam_options is not None
|
||||
|
||||
if debug_dino:
|
||||
from PIL import ImageDraw, Image
|
||||
debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black")
|
||||
draw = ImageDraw.Draw(debug_dino_image)
|
||||
for box in extras['sam_prompt']:
|
||||
draw.rectangle(box['data'], fill="white")
|
||||
return np.array(debug_dino_image)
|
||||
|
||||
return remove(
|
||||
image,
|
||||
session=new_session(mask_model, **extras),
|
||||
only_mask=True,
|
||||
**extras
|
||||
detections, boxes, logits, phrases = default_groundingdino(
|
||||
image=image,
|
||||
caption=sam_options.dino_prompt,
|
||||
box_threshold=sam_options.dino_box_threshold,
|
||||
text_threshold=sam_options.dino_text_threshold
|
||||
)
|
||||
# detection_boxes = detections.xyxy
|
||||
# # use full image if no box has been found
|
||||
# detection_boxes = np.array([[0, 0, image.shape[1], image.shape[0]]]) if len(detection_boxes) == 0 else detection_boxes
|
||||
#
|
||||
#
|
||||
# for idx, box in enumerate(detection_boxes):
|
||||
# box_list = box.tolist()
|
||||
# if box_erode_or_dilate != 0:
|
||||
# box_list[0] -= box_erode_or_dilate
|
||||
# box_list[1] -= box_erode_or_dilate
|
||||
# box_list[2] += box_erode_or_dilate
|
||||
# box_list[3] += box_erode_or_dilate
|
||||
# extras['sam_prompt'] += [{"type": "rectangle", "data": box_list}]
|
||||
#
|
||||
# if debug_dino:
|
||||
# from PIL import ImageDraw, Image
|
||||
# debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black")
|
||||
# draw = ImageDraw.Draw(debug_dino_image)
|
||||
# for box in extras['sam_prompt']:
|
||||
# draw.rectangle(box['data'], fill="white")
|
||||
# return np.array(debug_dino_image)
|
||||
|
||||
# TODO add support for box_erode_or_dilate again
|
||||
|
||||
H, W = image.shape[0], image.shape[1]
|
||||
boxes = boxes * torch.Tensor([W, H, W, H])
|
||||
boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
|
||||
boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
|
||||
|
||||
# TODO add model patcher for model logic and device management
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
sam = sam_model_registry[sam_options.model_type](checkpoint=sam_options.sam_checkpoint)
|
||||
sam.to(device=device)
|
||||
|
||||
sam_predictor = SamPredictor(sam)
|
||||
final_mask_tensor = torch.zeros((image.shape[0], image.shape[1]))
|
||||
|
||||
if boxes.size(0) > 0:
|
||||
sam_predictor.set_image(image)
|
||||
|
||||
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
|
||||
masks, _, _ = sam_predictor.predict_torch(
|
||||
point_coords=None,
|
||||
point_labels=None,
|
||||
boxes=transformed_boxes.to(device),
|
||||
multimask_output=False,
|
||||
)
|
||||
|
||||
masks = optimize_masks(masks)
|
||||
|
||||
num_obj = min(len(logits), sam_options.max_num_boxes)
|
||||
for obj_ind in range(num_obj):
|
||||
mask_tensor = masks[obj_ind][0]
|
||||
final_mask_tensor += mask_tensor
|
||||
|
||||
final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy()
|
||||
mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255
|
||||
mask_image = np.array(mask_image, dtype=np.uint8)
|
||||
return mask_image
|
||||
|
|
|
|||
|
|
@ -20,5 +20,4 @@ timm==0.9.2
|
|||
translators==5.8.9
|
||||
rembg==2.0.53
|
||||
groundingdino-py==0.4.0
|
||||
ultralytics==8.2.28
|
||||
segment_anything==1.0
|
||||
30
webui.py
30
webui.py
|
|
@ -16,6 +16,7 @@ import modules.meta_parser
|
|||
import args_manager
|
||||
import copy
|
||||
import launch
|
||||
from extras.inpaint_mask import SAMOptions
|
||||
|
||||
from modules.sdxl_styles import legal_style_names
|
||||
from modules.private_logger import get_current_html_path
|
||||
|
|
@ -223,7 +224,7 @@ with shared.gradio_root:
|
|||
choices=flags.inpaint_mask_cloth_category,
|
||||
value=modules.config.default_inpaint_mask_cloth_category,
|
||||
visible=False)
|
||||
inpaint_mask_sam_prompt_text = gr.Textbox(label='Segmentation prompt', value='', visible=False, info='Use singular whenever possible')
|
||||
inpaint_mask_dino_prompt_text = gr.Textbox(label='Segmentation prompt', value='', visible=False, info='Use singular whenever possible')
|
||||
with gr.Accordion("Advanced options", visible=False, open=False) as inpaint_mask_advanced_options:
|
||||
inpaint_mask_sam_model = gr.Dropdown(label='SAM model', choices=flags.inpaint_mask_sam_model, value=modules.config.default_inpaint_mask_sam_model)
|
||||
inpaint_mask_sam_quant = gr.Checkbox(label='Quantization', value=False)
|
||||
|
|
@ -231,24 +232,29 @@ with shared.gradio_root:
|
|||
inpaint_mask_text_threshold = gr.Slider(label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05)
|
||||
generate_mask_button = gr.Button(value='Generate mask from image')
|
||||
|
||||
def generate_mask(image, mask_model, cloth_category, sam_prompt_text, sam_model, sam_quant, box_threshold, text_threshold, debug_dino, dino_erode_or_dilate):
|
||||
def generate_mask(image, mask_model, cloth_category, dino_prompt_text, sam_model, sam_quant, box_threshold, text_threshold, dino_erode_or_dilate, debug_dino):
|
||||
from extras.inpaint_mask import generate_mask_from_image
|
||||
|
||||
extras = {}
|
||||
sam_options = None
|
||||
if mask_model == 'u2net_cloth_seg':
|
||||
extras['cloth_category'] = cloth_category
|
||||
elif mask_model == 'sam':
|
||||
extras['sam_prompt_text'] = sam_prompt_text
|
||||
extras['sam_model'] = sam_model
|
||||
extras['sam_quant'] = sam_quant
|
||||
extras['box_threshold'] = box_threshold
|
||||
extras['text_threshold'] = text_threshold
|
||||
sam_options = SAMOptions(
|
||||
dino_prompt=dino_prompt_text,
|
||||
dino_box_threshold=box_threshold,
|
||||
dino_text_threshold=text_threshold,
|
||||
box_erode_or_dilate=dino_erode_or_dilate,
|
||||
max_num_boxes=2, #TODO replace with actual value
|
||||
sam_checkpoint="./models/sam/sam_vit_l_0b3195.pth", # TODO replace with actual value
|
||||
model_type="vit_l"
|
||||
)
|
||||
|
||||
return generate_mask_from_image(image, mask_model, extras, dino_erode_or_dilate, debug_dino)
|
||||
return generate_mask_from_image(image, mask_model, extras, sam_options)
|
||||
|
||||
inpaint_mask_model.change(lambda x: [gr.update(visible=x == 'u2net_cloth_seg'), gr.update(visible=x == 'sam'), gr.update(visible=x == 'sam')],
|
||||
inputs=inpaint_mask_model,
|
||||
outputs=[inpaint_mask_cloth_category, inpaint_mask_sam_prompt_text, inpaint_mask_advanced_options],
|
||||
outputs=[inpaint_mask_cloth_category, inpaint_mask_dino_prompt_text, inpaint_mask_advanced_options],
|
||||
queue=False, show_progress=False)
|
||||
|
||||
with gr.TabItem(label='Describe') as desc_tab:
|
||||
|
|
@ -737,9 +743,9 @@ with shared.gradio_root:
|
|||
|
||||
generate_mask_button.click(fn=generate_mask,
|
||||
inputs=[inpaint_input_image, inpaint_mask_model, inpaint_mask_cloth_category,
|
||||
inpaint_mask_sam_prompt_text, inpaint_mask_sam_model, inpaint_mask_sam_quant,
|
||||
inpaint_mask_box_threshold, inpaint_mask_text_threshold, debug_dino,
|
||||
dino_erode_or_dilate],
|
||||
inpaint_mask_dino_prompt_text, inpaint_mask_sam_model, inpaint_mask_sam_quant,
|
||||
inpaint_mask_box_threshold, inpaint_mask_text_threshold, dino_erode_or_dilate,
|
||||
debug_dino],
|
||||
outputs=inpaint_mask_image, show_progress=True, queue=True)
|
||||
|
||||
ctrls = [currentTask, generate_image_grid]
|
||||
|
|
|
|||
Loading…
Reference in New Issue