feat: add checkbox, config and handling for saving only the final enhanced image (#61)
This commit is contained in:
parent
f15352001a
commit
829a6dc046
|
|
@ -17,7 +17,7 @@ args_parser.parser.add_argument("--disable-offload-from-vram", action="store_tru
|
|||
|
||||
args_parser.parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
|
||||
args_parser.parser.add_argument("--disable-image-log", action='store_true',
|
||||
help="Prevent writing images and logs to hard drive.")
|
||||
help="Prevent writing images and logs to the outputs folder.")
|
||||
|
||||
args_parser.parser.add_argument("--disable-analytics", action='store_true',
|
||||
help="Disables analytics for Gradio.")
|
||||
|
|
|
|||
|
|
@ -69,6 +69,9 @@
|
|||
"Read wildcards in order": "Read wildcards in order",
|
||||
"Black Out NSFW": "Black Out NSFW",
|
||||
"Use black image if NSFW is detected.": "Use black image if NSFW is detected.",
|
||||
"Save only final enhanced image": "Save only final enhanced image",
|
||||
"Save Metadata to Images": "Save Metadata to Images",
|
||||
"Adds parameters to generated images allowing manual regeneration.": "Adds parameters to generated images allowing manual regeneration.",
|
||||
"\ud83d\udcda History Log": "\uD83D\uDCDA History Log",
|
||||
"Image Style": "Image Style",
|
||||
"Fooocus V2": "Fooocus V2",
|
||||
|
|
|
|||
|
|
@ -96,6 +96,7 @@ class AsyncTask:
|
|||
self.inpaint_advanced_masking_checkbox = args.pop()
|
||||
self.invert_mask_checkbox = args.pop()
|
||||
self.inpaint_erode_or_dilate = args.pop()
|
||||
self.save_final_enhanced_image_only = args.pop() if not args_manager.args.disable_image_log else False
|
||||
self.save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
|
||||
self.metadata_scheme = MetadataScheme(
|
||||
args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS
|
||||
|
|
@ -278,7 +279,7 @@ def worker():
|
|||
def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id,
|
||||
denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond,
|
||||
negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps,
|
||||
total_count, show_intermediate_results):
|
||||
total_count, show_intermediate_results, persist_image=True):
|
||||
if async_task.last_stop is not False:
|
||||
ldm_patched.modules.model_management.interrupt_current_processing()
|
||||
if 'cn' in goals:
|
||||
|
|
@ -315,9 +316,8 @@ def worker():
|
|||
if modules.config.default_black_out_nsfw or async_task.black_out_nsfw:
|
||||
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
|
||||
imgs = default_censor(imgs)
|
||||
progressbar(async_task, current_progress,
|
||||
f'Saving image {current_task_id + 1}/{total_count} to system ...')
|
||||
img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras)
|
||||
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
|
||||
img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image)
|
||||
yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False,
|
||||
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
|
||||
|
||||
|
|
@ -333,7 +333,7 @@ def worker():
|
|||
async_task.adaptive_cfg
|
||||
)
|
||||
|
||||
def save_and_log(async_task, height, imgs, task, use_expansion, width, loras) -> list:
|
||||
def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list:
|
||||
img_paths = []
|
||||
for x in imgs:
|
||||
d = [('Prompt', 'prompt', task['log_positive_prompt']),
|
||||
|
|
@ -388,7 +388,7 @@ def worker():
|
|||
d.append(('Metadata Scheme', 'metadata_scheme',
|
||||
async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images))
|
||||
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
|
||||
img_paths.append(log(x, d, metadata_parser, async_task.output_format, task))
|
||||
img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image))
|
||||
|
||||
return img_paths
|
||||
|
||||
|
|
@ -963,7 +963,7 @@ def worker():
|
|||
inpaint_engine, inpaint_respective_field, inpaint_strength,
|
||||
prompt, negative_prompt, final_scheduler_name, goals, height, img, mask,
|
||||
preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style,
|
||||
use_synthetic_refiner, width, show_intermediate_results=True):
|
||||
use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True):
|
||||
base_model_additional_loras = []
|
||||
inpaint_head_model_path = None
|
||||
inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail
|
||||
|
|
@ -985,7 +985,7 @@ def worker():
|
|||
progressbar(async_task, current_progress, 'Checking for NSFW content ...')
|
||||
img = default_censor(img)
|
||||
progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...')
|
||||
uov_image_path = log(img, d, output_format=async_task.output_format)
|
||||
uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image)
|
||||
yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False,
|
||||
do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results)
|
||||
return current_progress, img, prompt, negative_prompt
|
||||
|
|
@ -1019,7 +1019,8 @@ def worker():
|
|||
final_scheduler_name, goals, initial_latent, steps, switch,
|
||||
task_enhance['c'], task_enhance['uc'], task_enhance, loras,
|
||||
tiled, use_expansion, width, height, current_progress,
|
||||
preparation_steps, total_count, show_intermediate_results)
|
||||
preparation_steps, total_count, show_intermediate_results,
|
||||
persist_image)
|
||||
|
||||
del task_enhance['c'], task_enhance['uc'] # Save memory
|
||||
return current_progress, imgs[0], prompt, negative_prompt
|
||||
|
|
@ -1027,7 +1028,7 @@ def worker():
|
|||
def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
|
||||
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
|
||||
prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled,
|
||||
total_count, use_expansion, use_style, use_synthetic_refiner, width):
|
||||
total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True):
|
||||
# reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting
|
||||
inpaint_worker.current_task = None
|
||||
|
||||
|
|
@ -1045,7 +1046,7 @@ def worker():
|
|||
controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False,
|
||||
'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name,
|
||||
goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count,
|
||||
use_expansion, use_style, use_synthetic_refiner, width)
|
||||
use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image)
|
||||
|
||||
except ldm_patched.modules.model_management.InterruptProcessingException:
|
||||
if async_task.last_stop == 'skip':
|
||||
|
|
@ -1168,6 +1169,8 @@ def worker():
|
|||
current_progress += 1
|
||||
progressbar(async_task, current_progress, 'Image processing ...')
|
||||
|
||||
should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0)
|
||||
|
||||
if 'vary' in goals:
|
||||
async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary(
|
||||
async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch,
|
||||
|
|
@ -1273,8 +1276,8 @@ def worker():
|
|||
int(current_progress + async_task.callback_steps),
|
||||
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)])
|
||||
|
||||
should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0)
|
||||
show_intermediate_results = len(tasks) > 1 or should_enhance
|
||||
persist_image = not should_enhance or not async_task.save_final_enhanced_image_only
|
||||
|
||||
for current_task_id, task in enumerate(tasks):
|
||||
progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...')
|
||||
|
|
@ -1287,7 +1290,8 @@ def worker():
|
|||
initial_latent, async_task.steps, switch, task['c'],
|
||||
task['uc'], task, loras, tiled, use_expansion, width,
|
||||
height, current_progress, preparation_steps,
|
||||
async_task.image_number, show_intermediate_results)
|
||||
async_task.image_number, show_intermediate_results,
|
||||
persist_image)
|
||||
|
||||
current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1))
|
||||
images_to_enhance += imgs
|
||||
|
|
@ -1314,8 +1318,12 @@ def worker():
|
|||
|
||||
active_enhance_tabs = len(async_task.enhance_ctrls)
|
||||
should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold()
|
||||
enhance_uov_before = False
|
||||
enhance_uov_after = False
|
||||
if should_process_enhance_uov:
|
||||
active_enhance_tabs += 1
|
||||
enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before
|
||||
enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after
|
||||
total_count = len(images_to_enhance) * active_enhance_tabs
|
||||
|
||||
base_progress = current_progress
|
||||
|
|
@ -1330,13 +1338,14 @@ def worker():
|
|||
last_enhance_prompt = async_task.prompt
|
||||
last_enhance_negative_prompt = async_task.negative_prompt
|
||||
|
||||
if should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_before:
|
||||
if enhance_uov_before:
|
||||
current_task_id += 1
|
||||
persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0
|
||||
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
|
||||
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
|
||||
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
|
||||
async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps,
|
||||
switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width)
|
||||
switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image)
|
||||
if exception_result == 'continue':
|
||||
continue
|
||||
elif exception_result == 'break':
|
||||
|
|
@ -1348,6 +1357,8 @@ def worker():
|
|||
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
|
||||
progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...')
|
||||
enhancement_task_start_time = time.perf_counter()
|
||||
is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after
|
||||
persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image
|
||||
|
||||
extras = {}
|
||||
if enhance_mask_model == 'sam':
|
||||
|
|
@ -1383,8 +1394,7 @@ def worker():
|
|||
print(f'[Enhance] {sam_detection_count} segments detected in boxes')
|
||||
print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask')
|
||||
|
||||
if enhance_mask_model == 'sam' and (
|
||||
dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
|
||||
if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
|
||||
print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping')
|
||||
continue
|
||||
|
||||
|
|
@ -1397,7 +1407,7 @@ def worker():
|
|||
enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength,
|
||||
enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask,
|
||||
preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style,
|
||||
use_synthetic_refiner, width)
|
||||
use_synthetic_refiner, width, persist_image=persist_image)
|
||||
|
||||
if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after
|
||||
and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled):
|
||||
|
|
@ -1424,14 +1434,16 @@ def worker():
|
|||
if exception_result == 'break':
|
||||
break
|
||||
|
||||
if should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after:
|
||||
if enhance_uov_after:
|
||||
current_task_id += 1
|
||||
# last step in enhance, always save
|
||||
persist_image = True
|
||||
current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale(
|
||||
all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path,
|
||||
current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps,
|
||||
last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img,
|
||||
preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner,
|
||||
width)
|
||||
width, persist_image)
|
||||
if exception_result == 'continue':
|
||||
continue
|
||||
elif exception_result == 'break':
|
||||
|
|
|
|||
|
|
@ -562,6 +562,12 @@ default_black_out_nsfw = get_config_item_or_set_default(
|
|||
validator=lambda x: isinstance(x, bool),
|
||||
expected_type=bool
|
||||
)
|
||||
default_save_only_final_enhanced_image = get_config_item_or_set_default(
|
||||
key='default_save_only_final_enhanced_image',
|
||||
default_value=False,
|
||||
validator=lambda x: isinstance(x, bool),
|
||||
expected_type=bool
|
||||
)
|
||||
default_save_metadata_to_images = get_config_item_or_set_default(
|
||||
key='default_save_metadata_to_images',
|
||||
default_value=False,
|
||||
|
|
|
|||
|
|
@ -21,8 +21,8 @@ def get_current_html_path(output_format=None):
|
|||
return html_name
|
||||
|
||||
|
||||
def log(img, metadata, metadata_parser: MetadataParser | None = None, output_format=None, task=None) -> str:
|
||||
path_outputs = modules.config.temp_path if args_manager.args.disable_image_log else modules.config.path_outputs
|
||||
def log(img, metadata, metadata_parser: MetadataParser | None = None, output_format=None, task=None, persist_image=True) -> str:
|
||||
path_outputs = modules.config.temp_path if args_manager.args.disable_image_log or not persist_image else modules.config.path_outputs
|
||||
output_format = output_format if output_format else modules.config.default_output_format
|
||||
date_string, local_temp_filename, only_name = generate_temp_filename(folder=path_outputs, extension=output_format)
|
||||
os.makedirs(os.path.dirname(local_temp_filename), exist_ok=True)
|
||||
|
|
|
|||
7
webui.py
7
webui.py
|
|
@ -753,6 +753,10 @@ with shared.gradio_root:
|
|||
inputs=black_out_nsfw, outputs=disable_preview, queue=False,
|
||||
show_progress=False)
|
||||
|
||||
if not args_manager.args.disable_image_log:
|
||||
save_final_enhanced_image_only = gr.Checkbox(label='Save only final enhanced image',
|
||||
value=modules.config.default_save_only_final_enhanced_image)
|
||||
|
||||
if not args_manager.args.disable_metadata:
|
||||
save_metadata_to_images = gr.Checkbox(label='Save Metadata to Images', value=modules.config.default_save_metadata_to_images,
|
||||
info='Adds parameters to generated images allowing manual regeneration.')
|
||||
|
|
@ -992,6 +996,9 @@ with shared.gradio_root:
|
|||
ctrls += freeu_ctrls
|
||||
ctrls += inpaint_ctrls
|
||||
|
||||
if not args_manager.args.disable_image_log:
|
||||
ctrls += [save_final_enhanced_image_only]
|
||||
|
||||
if not args_manager.args.disable_metadata:
|
||||
ctrls += [save_metadata_to_images, metadata_scheme]
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue