diff --git a/modules/core.py b/modules/core.py index 0a439bf7..c240674e 100644 --- a/modules/core.py +++ b/modules/core.py @@ -11,8 +11,7 @@ import comfy.utils from comfy.sd import load_checkpoint_guess_config from nodes import VAEDecode, EmptyLatentImage, CLIPTextEncode from comfy.sample import prepare_mask, broadcast_cond, load_additional_models, cleanup_additional_models -from modules.samplers_advanced import KSamplerAdvanced - +from modules.samplers_advanced import KSampler, KSamplerWithRefiner opCLIPTextEncode = CLIPTextEncode() opEmptyLatentImage = EmptyLatentImage() @@ -81,7 +80,9 @@ def close_all_preview(): @torch.no_grad() -def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='dpmpp_2m_sde', scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): +def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sampler_name='dpmpp_2m_sde', + scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None, + force_full_denoise=False): seed = seed if isinstance(seed, int) else random.randint(1, 2 ** 64) device = comfy.model_management.get_torch_device() @@ -123,7 +124,7 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=9.0, sa models = load_additional_models(positive, negative, model.model_dtype()) - sampler = KSamplerAdvanced(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, + sampler = KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, diff --git a/modules/samplers_advanced.py b/modules/samplers_advanced.py index e56562b8..234421db 100644 --- a/modules/samplers_advanced.py +++ b/modules/samplers_advanced.py @@ -1,7 +1,7 @@ from comfy.samplers import * -class KSamplerAdvanced: +class KSamplerWithRefiner: SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"] SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",