ling
This commit is contained in:
parent
4c94f0f590
commit
576aa9283f
|
|
@ -1 +1 @@
|
|||
version = '2.1.729'
|
||||
version = '2.1.730'
|
||||
|
|
|
|||
|
|
@ -218,19 +218,21 @@ def get_previewer(model):
|
|||
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
|
||||
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
|
||||
force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1,
|
||||
previewer_start=None, previewer_end=None, sigmas=None, noise=None):
|
||||
previewer_start=None, previewer_end=None, sigmas=None, noise_offset=None):
|
||||
|
||||
if sigmas is not None:
|
||||
sigmas = sigmas.clone().to(fcbh.model_management.get_torch_device())
|
||||
|
||||
latent_image = latent["samples"]
|
||||
|
||||
if noise is None:
|
||||
if disable_noise:
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
else:
|
||||
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
||||
noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds)
|
||||
if disable_noise:
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
else:
|
||||
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
||||
noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds)
|
||||
|
||||
if isinstance(noise_offset, torch.Tensor):
|
||||
noise = noise + noise_offset
|
||||
|
||||
noise_mask = None
|
||||
if "noise_mask" in latent:
|
||||
|
|
|
|||
|
|
@ -3,7 +3,6 @@ import os
|
|||
import torch
|
||||
import modules.patch
|
||||
import modules.path
|
||||
import fcbh.sample
|
||||
import fcbh.model_management
|
||||
import fcbh.latent_formats
|
||||
import modules.inpaint_worker
|
||||
|
|
@ -279,14 +278,6 @@ def vae_parse(latent):
|
|||
return {'samples': result}
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def noise_parse(latent: torch.Tensor, seed: int, noise_inds=None, k=0.9):
|
||||
noise = fcbh.sample.prepare_noise(latent, seed=seed, noise_inds=noise_inds)
|
||||
offset = torch.mean(latent, dim=1, keepdim=True)
|
||||
return offset * k + noise
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def calculate_sigmas_all(sampler, model, scheduler, steps):
|
||||
|
|
@ -477,10 +468,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
|||
denoise=denoise)[switch:] * k_sigmas
|
||||
len_sigmas = len(sigmas) - 1
|
||||
|
||||
residual_noise = noise_parse(
|
||||
modules.patch.eps_record,
|
||||
seed=image_seed+1,
|
||||
noise_inds=sampled_latent["batch_index"] if "batch_index" in sampled_latent else None)
|
||||
noise_offset = torch.mean(modules.patch.eps_record, dim=1, keepdim=True) * 0.9
|
||||
|
||||
if modules.inpaint_worker.current_task is not None:
|
||||
modules.inpaint_worker.current_task.swap()
|
||||
|
|
@ -500,7 +488,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
|||
previewer_start=switch,
|
||||
previewer_end=steps,
|
||||
sigmas=sigmas,
|
||||
noise=residual_noise
|
||||
noise_offset=noise_offset
|
||||
)
|
||||
|
||||
target_model = final_refiner_vae
|
||||
|
|
|
|||
Loading…
Reference in New Issue