parent
42bb1cda2f
commit
4c867c1b8b
|
|
@ -94,253 +94,220 @@ def zero_module(module):
|
|||
def Normalize(in_channels, dtype=None, device=None):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
||||
|
||||
def attention_basic(q, k, v, heads, mask=None):
|
||||
h = heads
|
||||
scale = (q.shape[-1] // heads) ** -0.5
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
class SpatialSelfAttention(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
# force cast to fp32 to avoid overflowing
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
q, k = q.float(), k.float()
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * scale
|
||||
else:
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * scale
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
del q, k
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
if exists(mask):
|
||||
mask = rearrange(mask, 'b ... -> b (...)')
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
q = rearrange(q, 'b c h w -> b (h w) c')
|
||||
k = rearrange(k, 'b c h w -> b c (h w)')
|
||||
w_ = torch.einsum('bij,bjk->bik', q, k)
|
||||
# attention, what we cannot get enough of
|
||||
sim = sim.softmax(dim=-1)
|
||||
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = rearrange(v, 'b c h w -> b c (h w)')
|
||||
w_ = rearrange(w_, 'b i j -> b j i')
|
||||
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
||||
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return out
|
||||
|
||||
|
||||
class CrossAttentionBirchSan(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
def attention_sub_quad(query, key, value, heads, mask=None):
|
||||
scale = (query.shape[-1] // heads) ** -0.5
|
||||
query = query.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
key_t = key.transpose(1,2).unflatten(1, (heads, -1)).flatten(end_dim=1)
|
||||
del key
|
||||
value = value.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
dtype = query.dtype
|
||||
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
|
||||
if upcast_attention:
|
||||
bytes_per_token = torch.finfo(torch.float32).bits//8
|
||||
else:
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
batch_x_heads, q_tokens, _ = query.shape
|
||||
_, _, k_tokens = key_t.shape
|
||||
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
h = self.heads
|
||||
kv_chunk_size_min = None
|
||||
|
||||
query = self.to_q(x)
|
||||
context = default(context, x)
|
||||
key = self.to_k(context)
|
||||
if value is not None:
|
||||
value = self.to_v(value)
|
||||
else:
|
||||
value = self.to_v(context)
|
||||
#not sure at all about the math here
|
||||
#TODO: tweak this
|
||||
if mem_free_total > 8192 * 1024 * 1024 * 1.3:
|
||||
query_chunk_size_x = 1024 * 4
|
||||
elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
|
||||
query_chunk_size_x = 1024 * 2
|
||||
else:
|
||||
query_chunk_size_x = 1024
|
||||
kv_chunk_size_min_x = None
|
||||
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
|
||||
if kv_chunk_size_x < 1024:
|
||||
kv_chunk_size_x = None
|
||||
|
||||
del context, x
|
||||
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
|
||||
# the big matmul fits into our memory limit; do everything in 1 chunk,
|
||||
# i.e. send it down the unchunked fast-path
|
||||
query_chunk_size = q_tokens
|
||||
kv_chunk_size = k_tokens
|
||||
else:
|
||||
query_chunk_size = query_chunk_size_x
|
||||
kv_chunk_size = kv_chunk_size_x
|
||||
kv_chunk_size_min = kv_chunk_size_min_x
|
||||
|
||||
query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
key_t = key.transpose(1,2).unflatten(1, (self.heads, -1)).flatten(end_dim=1)
|
||||
del key
|
||||
value = value.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
|
||||
hidden_states = efficient_dot_product_attention(
|
||||
query,
|
||||
key_t,
|
||||
value,
|
||||
query_chunk_size=query_chunk_size,
|
||||
kv_chunk_size=kv_chunk_size,
|
||||
kv_chunk_size_min=kv_chunk_size_min,
|
||||
use_checkpoint=False,
|
||||
upcast_attention=upcast_attention,
|
||||
)
|
||||
|
||||
dtype = query.dtype
|
||||
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
|
||||
if upcast_attention:
|
||||
bytes_per_token = torch.finfo(torch.float32).bits//8
|
||||
else:
|
||||
bytes_per_token = torch.finfo(query.dtype).bits//8
|
||||
batch_x_heads, q_tokens, _ = query.shape
|
||||
_, _, k_tokens = key_t.shape
|
||||
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
|
||||
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
||||
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
|
||||
return hidden_states
|
||||
|
||||
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
|
||||
def attention_split(q, k, v, heads, mask=None):
|
||||
scale = (q.shape[-1] // heads) ** -0.5
|
||||
h = heads
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
kv_chunk_size_min = None
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
|
||||
#not sure at all about the math here
|
||||
#TODO: tweak this
|
||||
if mem_free_total > 8192 * 1024 * 1024 * 1.3:
|
||||
query_chunk_size_x = 1024 * 4
|
||||
elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
|
||||
query_chunk_size_x = 1024 * 2
|
||||
else:
|
||||
query_chunk_size_x = 1024
|
||||
kv_chunk_size_min_x = None
|
||||
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
|
||||
if kv_chunk_size_x < 1024:
|
||||
kv_chunk_size_x = None
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
|
||||
# the big matmul fits into our memory limit; do everything in 1 chunk,
|
||||
# i.e. send it down the unchunked fast-path
|
||||
query_chunk_size = q_tokens
|
||||
kv_chunk_size = k_tokens
|
||||
else:
|
||||
query_chunk_size = query_chunk_size_x
|
||||
kv_chunk_size = kv_chunk_size_x
|
||||
kv_chunk_size_min = kv_chunk_size_min_x
|
||||
|
||||
hidden_states = efficient_dot_product_attention(
|
||||
query,
|
||||
key_t,
|
||||
value,
|
||||
query_chunk_size=query_chunk_size,
|
||||
kv_chunk_size=kv_chunk_size,
|
||||
kv_chunk_size_min=kv_chunk_size_min,
|
||||
use_checkpoint=self.training,
|
||||
upcast_attention=upcast_attention,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
|
||||
hidden_states = hidden_states.unflatten(0, (-1, self.heads)).transpose(1,2).flatten(start_dim=2)
|
||||
|
||||
out_proj, dropout = self.to_out
|
||||
hidden_states = out_proj(hidden_states)
|
||||
hidden_states = dropout(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
|
||||
class CrossAttentionDoggettx(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
||||
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
if steps > 64:
|
||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q_in = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k_in = self.to_k(context)
|
||||
if value is not None:
|
||||
v_in = self.to_v(value)
|
||||
del value
|
||||
else:
|
||||
v_in = self.to_v(context)
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
||||
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
||||
|
||||
if steps > 64:
|
||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
||||
|
||||
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
|
||||
first_op_done = False
|
||||
cleared_cache = False
|
||||
while True:
|
||||
try:
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * self.scale
|
||||
else:
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale
|
||||
first_op_done = True
|
||||
|
||||
s2 = s1.softmax(dim=-1).to(v.dtype)
|
||||
del s1
|
||||
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
if first_op_done == False:
|
||||
model_management.soft_empty_cache(True)
|
||||
if cleared_cache == False:
|
||||
cleared_cache = True
|
||||
print("out of memory error, emptying cache and trying again")
|
||||
continue
|
||||
steps *= 2
|
||||
if steps > 64:
|
||||
raise e
|
||||
print("out of memory error, increasing steps and trying again", steps)
|
||||
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
|
||||
first_op_done = False
|
||||
cleared_cache = False
|
||||
while True:
|
||||
try:
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
|
||||
else:
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
|
||||
first_op_done = True
|
||||
|
||||
s2 = s1.softmax(dim=-1).to(v.dtype)
|
||||
del s1
|
||||
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
if first_op_done == False:
|
||||
model_management.soft_empty_cache(True)
|
||||
if cleared_cache == False:
|
||||
cleared_cache = True
|
||||
print("out of memory error, emptying cache and trying again")
|
||||
continue
|
||||
steps *= 2
|
||||
if steps > 64:
|
||||
raise e
|
||||
print("out of memory error, increasing steps and trying again", steps)
|
||||
else:
|
||||
raise e
|
||||
|
||||
del q, k, v
|
||||
del q, k, v
|
||||
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
return r2
|
||||
|
||||
return self.to_out(r2)
|
||||
def attention_xformers(q, k, v, heads, mask=None):
|
||||
b, _, _ = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, t.shape[1], heads, -1)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * heads, t.shape[1], -1)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
# actually compute the attention, what we cannot get enough of
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||
|
||||
if exists(mask):
|
||||
raise NotImplementedError
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, heads, out.shape[1], -1)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, out.shape[1], -1)
|
||||
)
|
||||
return out
|
||||
|
||||
def attention_pytorch(q, k, v, heads, mask=None):
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
|
||||
if exists(mask):
|
||||
raise NotImplementedError
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return out
|
||||
|
||||
optimized_attention = attention_basic
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
print("Using xformers cross attention")
|
||||
optimized_attention = attention_xformers
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
print("Using pytorch cross attention")
|
||||
optimized_attention = attention_pytorch
|
||||
else:
|
||||
if args.use_split_cross_attention:
|
||||
print("Using split optimization for cross attention")
|
||||
optimized_attention = attention_split
|
||||
else:
|
||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
optimized_attention = attention_sub_quad
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
|
|
@ -348,62 +315,6 @@ class CrossAttention(nn.Module):
|
|||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
if value is not None:
|
||||
v = self.to_v(value)
|
||||
del value
|
||||
else:
|
||||
v = self.to_v(context)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
# force cast to fp32 to avoid overflowing
|
||||
if _ATTN_PRECISION =="fp32":
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
q, k = q.float(), k.float()
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
else:
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
del q, k
|
||||
|
||||
if exists(mask):
|
||||
mask = rearrange(mask, 'b ... -> b (...)')
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
sim = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', sim, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
||||
|
||||
class MemoryEfficientCrossAttention(nn.Module):
|
||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
|
|
@ -412,7 +323,6 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
q = self.to_q(x)
|
||||
|
|
@ -424,85 +334,9 @@ class MemoryEfficientCrossAttention(nn.Module):
|
|||
else:
|
||||
v = self.to_v(context)
|
||||
|
||||
b, _, _ = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
# actually compute the attention, what we cannot get enough of
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
||||
|
||||
if exists(mask):
|
||||
raise NotImplementedError
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
||||
)
|
||||
out = optimized_attention(q, k, v, self.heads, mask)
|
||||
return self.to_out(out)
|
||||
|
||||
class CrossAttentionPytorch(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
if value is not None:
|
||||
v = self.to_v(value)
|
||||
del value
|
||||
else:
|
||||
v = self.to_v(context)
|
||||
|
||||
b, _, _ = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
|
||||
if exists(mask):
|
||||
raise NotImplementedError
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
|
||||
)
|
||||
|
||||
return self.to_out(out)
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
print("Using xformers cross attention")
|
||||
CrossAttention = MemoryEfficientCrossAttention
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
print("Using pytorch cross attention")
|
||||
CrossAttention = CrossAttentionPytorch
|
||||
else:
|
||||
if args.use_split_cross_attention:
|
||||
print("Using split optimization for cross attention")
|
||||
CrossAttention = CrossAttentionDoggettx
|
||||
else:
|
||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||
CrossAttention = CrossAttentionBirchSan
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
|
|
|
|||
|
|
@ -6,7 +6,6 @@ import numpy as np
|
|||
from einops import rearrange
|
||||
from typing import Optional, Any
|
||||
|
||||
from ..attention import MemoryEfficientCrossAttention
|
||||
from comfy import model_management
|
||||
import comfy.ops
|
||||
|
||||
|
|
@ -352,20 +351,11 @@ class MemoryEfficientAttnBlockPytorch(nn.Module):
|
|||
out = self.proj_out(out)
|
||||
return x+out
|
||||
|
||||
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
||||
def forward(self, x, context=None, mask=None):
|
||||
b, c, h, w = x.shape
|
||||
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||
out = super().forward(x, context=context, mask=mask)
|
||||
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
||||
return x + out
|
||||
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
||||
if model_management.xformers_enabled_vae() and attn_type == "vanilla":
|
||||
attn_type = "vanilla-xformers"
|
||||
if model_management.pytorch_attention_enabled() and attn_type == "vanilla":
|
||||
elif model_management.pytorch_attention_enabled() and attn_type == "vanilla":
|
||||
attn_type = "vanilla-pytorch"
|
||||
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
if attn_type == "vanilla":
|
||||
|
|
@ -376,9 +366,6 @@ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
|||
return MemoryEfficientAttnBlock(in_channels)
|
||||
elif attn_type == "vanilla-pytorch":
|
||||
return MemoryEfficientAttnBlockPytorch(in_channels)
|
||||
elif type == "memory-efficient-cross-attn":
|
||||
attn_kwargs["query_dim"] = in_channels
|
||||
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
||||
elif attn_type == "none":
|
||||
return nn.Identity(in_channels)
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -154,14 +154,18 @@ def is_nvidia():
|
|||
return True
|
||||
return False
|
||||
|
||||
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
|
||||
ENABLE_PYTORCH_ATTENTION = False
|
||||
if args.use_pytorch_cross_attention:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
XFORMERS_IS_AVAILABLE = False
|
||||
|
||||
VAE_DTYPE = torch.float32
|
||||
|
||||
try:
|
||||
if is_nvidia():
|
||||
torch_version = torch.version.__version__
|
||||
if int(torch_version[0]) >= 2:
|
||||
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if torch.cuda.is_bf16_supported():
|
||||
VAE_DTYPE = torch.bfloat16
|
||||
|
|
@ -186,7 +190,6 @@ if ENABLE_PYTORCH_ATTENTION:
|
|||
torch.backends.cuda.enable_math_sdp(True)
|
||||
torch.backends.cuda.enable_flash_sdp(True)
|
||||
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
||||
XFORMERS_IS_AVAILABLE = False
|
||||
|
||||
if args.lowvram:
|
||||
set_vram_to = VRAMState.LOW_VRAM
|
||||
|
|
@ -354,6 +357,8 @@ def load_models_gpu(models, memory_required=0):
|
|||
current_loaded_models.insert(0, current_loaded_models.pop(index))
|
||||
models_already_loaded.append(loaded_model)
|
||||
else:
|
||||
if hasattr(x, "model"):
|
||||
print(f"Requested to load {x.model.__class__.__name__}")
|
||||
models_to_load.append(loaded_model)
|
||||
|
||||
if len(models_to_load) == 0:
|
||||
|
|
@ -363,7 +368,7 @@ def load_models_gpu(models, memory_required=0):
|
|||
free_memory(extra_mem, d, models_already_loaded)
|
||||
return
|
||||
|
||||
print("loading new")
|
||||
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
|
||||
|
||||
total_memory_required = {}
|
||||
for loaded_model in models_to_load:
|
||||
|
|
@ -405,7 +410,6 @@ def load_model_gpu(model):
|
|||
def cleanup_models():
|
||||
to_delete = []
|
||||
for i in range(len(current_loaded_models)):
|
||||
print(sys.getrefcount(current_loaded_models[i].model))
|
||||
if sys.getrefcount(current_loaded_models[i].model) <= 2:
|
||||
to_delete = [i] + to_delete
|
||||
|
||||
|
|
|
|||
|
|
@ -408,6 +408,10 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
|
|||
output[b:b+1] = out/out_div
|
||||
return output
|
||||
|
||||
PROGRESS_BAR_ENABLED = True
|
||||
def set_progress_bar_enabled(enabled):
|
||||
global PROGRESS_BAR_ENABLED
|
||||
PROGRESS_BAR_ENABLED = enabled
|
||||
|
||||
PROGRESS_BAR_HOOK = None
|
||||
def set_progress_bar_global_hook(function):
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ import comfy.sample
|
|||
from comfy.k_diffusion import sampling as k_diffusion_sampling
|
||||
import latent_preview
|
||||
import torch
|
||||
import comfy.utils
|
||||
|
||||
|
||||
class BasicScheduler:
|
||||
|
|
@ -219,7 +220,7 @@ class SamplerCustom:
|
|||
x0_output = {}
|
||||
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
|
||||
|
||||
disable_pbar = False
|
||||
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
|
||||
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
|
||||
|
||||
out = latent.copy()
|
||||
|
|
|
|||
|
|
@ -29,6 +29,8 @@ folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes
|
|||
|
||||
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
|
||||
|
||||
folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""})
|
||||
|
||||
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
||||
temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
||||
input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
|
||||
|
|
|
|||
|
|
@ -1202,7 +1202,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||
noise_mask = latent["noise_mask"]
|
||||
|
||||
callback = latent_preview.prepare_callback(model, steps)
|
||||
disable_pbar = False
|
||||
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
|
||||
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
||||
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
|
|
|
|||
|
|
@ -3,47 +3,18 @@ import comfy.clip_vision
|
|||
import safetensors.torch as sf
|
||||
import comfy.model_management as model_management
|
||||
import contextlib
|
||||
import comfy.ldm.modules.attention as attention
|
||||
|
||||
from fooocus_extras.resampler import Resampler
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
|
||||
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
|
||||
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
|
||||
|
||||
|
||||
def sdp(q, k, v, extra_options):
|
||||
if model_management.xformers_enabled():
|
||||
b, _, _ = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.unsqueeze(3)
|
||||
.reshape(b, t.shape[1], extra_options["n_heads"], extra_options["dim_head"])
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b * extra_options["n_heads"], t.shape[1], extra_options["dim_head"])
|
||||
.contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
||||
out = (
|
||||
out.unsqueeze(0)
|
||||
.reshape(b, extra_options["n_heads"], out.shape[1], extra_options["dim_head"])
|
||||
.permute(0, 2, 1, 3)
|
||||
.reshape(b, out.shape[1], extra_options["n_heads"] * extra_options["dim_head"])
|
||||
)
|
||||
else:
|
||||
b, _, _ = q.shape
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, extra_options["n_heads"], extra_options["dim_head"]).transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(1, 2).reshape(b, -1, extra_options["n_heads"] * extra_options["dim_head"])
|
||||
return out
|
||||
return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None)
|
||||
|
||||
|
||||
class ImageProjModel(torch.nn.Module):
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
version = '2.1.50'
|
||||
version = '2.1.51'
|
||||
|
|
|
|||
Loading…
Reference in New Issue