diff --git a/fooocus_version.py b/fooocus_version.py index 5637cda9..08913c7c 100644 --- a/fooocus_version.py +++ b/fooocus_version.py @@ -1 +1 @@ -version = '2.1.730' +version = '2.1.731' diff --git a/modules/core.py b/modules/core.py index 3000f0ae..60ebdf65 100644 --- a/modules/core.py +++ b/modules/core.py @@ -218,7 +218,7 @@ def get_previewer(model): def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu', scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1, - previewer_start=None, previewer_end=None, sigmas=None, noise_offset=None): + previewer_start=None, previewer_end=None, sigmas=None, noise_mean=None): if sigmas is not None: sigmas = sigmas.clone().to(fcbh.model_management.get_torch_device()) @@ -231,8 +231,8 @@ def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sa batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds) - if isinstance(noise_offset, torch.Tensor): - noise = noise + noise_offset + if isinstance(noise_mean, torch.Tensor): + noise = noise + noise_mean - torch.mean(noise, dim=1, keepdim=True) noise_mask = None if "noise_mask" in latent: diff --git a/modules/default_pipeline.py b/modules/default_pipeline.py index a1e19e3f..8557ac2b 100644 --- a/modules/default_pipeline.py +++ b/modules/default_pipeline.py @@ -468,7 +468,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height denoise=denoise)[switch:] * k_sigmas len_sigmas = len(sigmas) - 1 - noise_offset = torch.mean(modules.patch.eps_record, dim=1, keepdim=True) * 0.9 + noise_mean = torch.mean(modules.patch.eps_record, dim=1, keepdim=True) if modules.inpaint_worker.current_task is not None: modules.inpaint_worker.current_task.swap() @@ -488,7 +488,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height previewer_start=switch, previewer_end=steps, sigmas=sigmas, - noise_offset=noise_offset + noise_mean=noise_mean ) target_model = final_refiner_vae