feat: add enhance image input
use this so you don't have to modify an image before enhancement
This commit is contained in:
parent
c7a411a8c7
commit
40e1c82b74
|
|
@ -113,6 +113,7 @@ class AsyncTask:
|
|||
self.dino_erode_or_dilate = args.pop()
|
||||
self.debugging_enhance_masks_checkbox = args.pop()
|
||||
|
||||
self.enhance_input_image = args.pop()
|
||||
self.enhance_checkbox = args.pop()
|
||||
self.enhance_uov_method = args.pop()
|
||||
self.enhance_ctrls = []
|
||||
|
|
@ -569,7 +570,7 @@ def worker():
|
|||
H, W, C = uov_input_image.shape
|
||||
if advance_progress:
|
||||
current_progress += 1
|
||||
progressbar(async_task, current_progress, f'Upscaling image from {str((H, W))} ...')
|
||||
progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...')
|
||||
uov_input_image = perform_upscale(uov_input_image)
|
||||
print(f'Image upscaled.')
|
||||
if '1.5x' in uov_method:
|
||||
|
|
@ -843,7 +844,7 @@ def worker():
|
|||
skip_prompt_processing, use_synthetic_refiner):
|
||||
if (async_task.current_tab == 'uov' or (
|
||||
async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \
|
||||
and async_task.uov_method != flags.disabled and async_task.uov_input_image is not None:
|
||||
and async_task.uov_method != flags.disabled.lower() and async_task.uov_input_image is not None:
|
||||
async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale(
|
||||
async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection,
|
||||
async_task.steps, 1, skip_prompt_processing=skip_prompt_processing)
|
||||
|
|
@ -914,6 +915,10 @@ def worker():
|
|||
if len(async_task.cn_tasks[flags.cn_ip_face]) > 0:
|
||||
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
|
||||
'face')
|
||||
if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None:
|
||||
goals.append('enhance')
|
||||
skip_prompt_processing = True
|
||||
async_task.enhance_input_image = HWC3(async_task.enhance_input_image)
|
||||
return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner
|
||||
|
||||
def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress,
|
||||
|
|
@ -1161,18 +1166,26 @@ def worker():
|
|||
if async_task.freeu_enabled:
|
||||
apply_freeu(async_task)
|
||||
|
||||
# async_task.steps can have value of uov steps here when upscale has been applied
|
||||
steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width)
|
||||
|
||||
images_to_enhance = []
|
||||
if 'enhance' in goals:
|
||||
images_to_enhance += [async_task.enhance_input_image]
|
||||
height, width, _ = async_task.enhance_input_image.shape
|
||||
# input image already provided, processing is skipped
|
||||
steps = 0
|
||||
|
||||
all_steps = steps * async_task.image_number
|
||||
|
||||
# enhance_upscale_steps = 0
|
||||
# enhance_upscale_steps_total = 0
|
||||
if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled:
|
||||
if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.lower():
|
||||
enhance_upscale_steps, _, _, _ = apply_overrides(async_task, async_task.performance_selection.steps_uov(), height, width)
|
||||
enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps
|
||||
all_steps += enhance_upscale_steps_total
|
||||
|
||||
if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0:
|
||||
all_steps += async_task.image_number * len(async_task.enhance_ctrls) * steps
|
||||
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
|
||||
all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps
|
||||
|
||||
|
||||
print(f'[Parameters] Denoising Strength = {denoising_strength}')
|
||||
|
|
@ -1205,8 +1218,6 @@ def worker():
|
|||
int(current_progress + async_task.callback_steps),
|
||||
f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)])
|
||||
|
||||
generated_imgs = {}
|
||||
|
||||
for current_task_id, task in enumerate(tasks):
|
||||
progressbar(async_task, current_progress,
|
||||
f'Preparing task {current_task_id + 1}/{async_task.image_number} ...')
|
||||
|
|
@ -1222,7 +1233,7 @@ def worker():
|
|||
preparation_steps, preparation_steps,
|
||||
async_task.image_number)
|
||||
|
||||
generated_imgs[current_task_id] = imgs
|
||||
images_to_enhance += imgs
|
||||
|
||||
except ldm_patched.modules.model_management.InterruptProcessingException:
|
||||
if async_task.last_stop == 'skip':
|
||||
|
|
@ -1237,7 +1248,7 @@ def worker():
|
|||
execution_time = time.perf_counter() - execution_start_time
|
||||
print(f'Generating and saving time: {execution_time:.2f} seconds')
|
||||
|
||||
if not async_task.enhance_checkbox or (async_task.enhance_uov_method == flags.disabled and len(async_task.enhance_ctrls) == 0):
|
||||
if not async_task.enhance_checkbox or (async_task.enhance_uov_method == flags.disabled.lower() and len(async_task.enhance_ctrls) == 0):
|
||||
print(f'[Enhance] Skipping, preconditions aren\'t met')
|
||||
stop_processing(async_task, processing_start_time)
|
||||
return
|
||||
|
|
@ -1245,124 +1256,123 @@ def worker():
|
|||
progressbar(async_task, current_progress, 'Processing enhance ...')
|
||||
|
||||
active_enhance_tabs = len(async_task.enhance_ctrls)
|
||||
should_process_uov = async_task.enhance_uov_method != flags.disabled
|
||||
if should_process_uov:
|
||||
should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.lower()
|
||||
if should_process_enhance_uov:
|
||||
active_enhance_tabs += 1
|
||||
total_count = sum([len(imgs) for _, imgs in generated_imgs.items()]) * active_enhance_tabs
|
||||
total_count = len(images_to_enhance) * active_enhance_tabs
|
||||
|
||||
base_progress = current_progress
|
||||
current_task_id = -1
|
||||
done_steps_upscaling = 0
|
||||
done_steps_inpainting = 0
|
||||
enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
|
||||
for imgs in generated_imgs.values():
|
||||
for img in imgs:
|
||||
enhancement_image_start_time = time.perf_counter()
|
||||
for img in images_to_enhance:
|
||||
enhancement_image_start_time = time.perf_counter()
|
||||
|
||||
# upscale if not disabled or already in goals
|
||||
if should_process_uov:
|
||||
current_task_id += 1
|
||||
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
|
||||
goals_enhance = []
|
||||
img, skip_prompt_processing, steps = prepare_upscale(async_task, goals_enhance, img,
|
||||
async_task.enhance_uov_method,
|
||||
async_task.performance_selection,
|
||||
enhance_steps, current_progress)
|
||||
# upscale if not disabled or already in goals
|
||||
if should_process_enhance_uov:
|
||||
current_task_id += 1
|
||||
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
|
||||
goals_enhance = []
|
||||
img, skip_prompt_processing, steps = prepare_upscale(async_task, goals_enhance, img,
|
||||
async_task.enhance_uov_method,
|
||||
async_task.performance_selection,
|
||||
enhance_steps, current_progress)
|
||||
|
||||
steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width)
|
||||
|
||||
if len(goals_enhance) > 0:
|
||||
try:
|
||||
current_progress, img = process_enhance(
|
||||
all_steps, async_task, callback, controlnet_canny_path,
|
||||
controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False,
|
||||
'None', 0.0, 0.0, async_task.negative_prompt, async_task.prompt, final_scheduler_name,
|
||||
goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count,
|
||||
use_expansion, use_style, use_synthetic_refiner, width)
|
||||
|
||||
except ldm_patched.modules.model_management.InterruptProcessingException:
|
||||
if async_task.last_stop == 'skip':
|
||||
print('User skipped')
|
||||
async_task.last_stop = False
|
||||
# also skip all enhance steps for this image, but add the steps to the progress bar
|
||||
done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps
|
||||
continue
|
||||
else:
|
||||
print('User stopped')
|
||||
break
|
||||
finally:
|
||||
done_steps_upscaling += steps
|
||||
|
||||
# inpaint for all other tabs
|
||||
for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls:
|
||||
current_task_id += 1
|
||||
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
|
||||
progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...')
|
||||
enhancement_task_start_time = time.perf_counter()
|
||||
|
||||
if enhance_mask_model == 'sam':
|
||||
print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"')
|
||||
|
||||
mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image(
|
||||
img, mask_model=enhance_mask_model, sam_options=SAMOptions(
|
||||
dino_prompt=enhance_mask_dino_prompt_text,
|
||||
dino_box_threshold=enhance_mask_box_threshold,
|
||||
dino_text_threshold=enhance_mask_text_threshold,
|
||||
dino_erode_or_dilate=async_task.dino_erode_or_dilate,
|
||||
dino_debug=async_task.debugging_dino,
|
||||
max_detections=enhance_mask_sam_max_detections,
|
||||
model_type=enhance_mask_sam_model,
|
||||
))
|
||||
if len(mask.shape) == 3:
|
||||
mask = mask[:, :, 0]
|
||||
|
||||
if int(enhance_inpaint_erode_or_dilate) != 0:
|
||||
mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate)
|
||||
|
||||
if enhance_mask_invert:
|
||||
mask = 255 - mask
|
||||
|
||||
if async_task.debugging_enhance_masks_checkbox:
|
||||
async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)])
|
||||
yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False,
|
||||
async_task.disable_intermediate_results)
|
||||
|
||||
print(f'[Enhance] {dino_detection_count} boxes detected')
|
||||
print(f'[Enhance] {sam_detection_count} segments detected in boxes')
|
||||
print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask')
|
||||
|
||||
if enhance_mask_model == 'sam' and (
|
||||
dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
|
||||
print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping')
|
||||
continue
|
||||
|
||||
goals_enhance = ['inpaint']
|
||||
steps, _, _, _ = apply_overrides(async_task, steps, height, width)
|
||||
|
||||
if len(goals_enhance) > 0:
|
||||
try:
|
||||
current_progress, img = process_enhance(
|
||||
all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
|
||||
current_progress, current_task_id, denoising_strength,
|
||||
enhance_inpaint_disable_initial_latent, enhance_inpaint_engine,
|
||||
enhance_inpaint_respective_field, enhance_inpaint_strength, enhance_negative_prompt,
|
||||
enhance_prompt, final_scheduler_name, goals_enhance, height, img, mask, preparation_steps,
|
||||
enhance_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width)
|
||||
all_steps, async_task, callback, controlnet_canny_path,
|
||||
controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False,
|
||||
'None', 0.0, 0.0, async_task.negative_prompt, async_task.prompt, final_scheduler_name,
|
||||
goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count,
|
||||
use_expansion, use_style, use_synthetic_refiner, width)
|
||||
|
||||
except ldm_patched.modules.model_management.InterruptProcessingException:
|
||||
if async_task.last_stop == 'skip':
|
||||
print('User skipped')
|
||||
async_task.last_stop = False
|
||||
# also skip all enhance steps for this image, but add the steps to the progress bar
|
||||
done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps
|
||||
continue
|
||||
else:
|
||||
print('User stopped')
|
||||
break
|
||||
finally:
|
||||
done_steps_inpainting += enhance_steps
|
||||
done_steps_upscaling += steps
|
||||
|
||||
enhancement_task_time = time.perf_counter() - enhancement_task_start_time
|
||||
print(f'Enhancement time: {enhancement_task_time:.2f} seconds')
|
||||
# inpaint for all other tabs
|
||||
for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls:
|
||||
current_task_id += 1
|
||||
current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting))
|
||||
progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...')
|
||||
enhancement_task_start_time = time.perf_counter()
|
||||
|
||||
enhancement_image_time = time.perf_counter() - enhancement_image_start_time
|
||||
print(f'Enhancement image time: {enhancement_image_time:.2f} seconds')
|
||||
if enhance_mask_model == 'sam':
|
||||
print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"')
|
||||
|
||||
mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image(
|
||||
img, mask_model=enhance_mask_model, sam_options=SAMOptions(
|
||||
dino_prompt=enhance_mask_dino_prompt_text,
|
||||
dino_box_threshold=enhance_mask_box_threshold,
|
||||
dino_text_threshold=enhance_mask_text_threshold,
|
||||
dino_erode_or_dilate=async_task.dino_erode_or_dilate,
|
||||
dino_debug=async_task.debugging_dino,
|
||||
max_detections=enhance_mask_sam_max_detections,
|
||||
model_type=enhance_mask_sam_model,
|
||||
))
|
||||
if len(mask.shape) == 3:
|
||||
mask = mask[:, :, 0]
|
||||
|
||||
if int(enhance_inpaint_erode_or_dilate) != 0:
|
||||
mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate)
|
||||
|
||||
if enhance_mask_invert:
|
||||
mask = 255 - mask
|
||||
|
||||
if async_task.debugging_enhance_masks_checkbox:
|
||||
async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)])
|
||||
yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False,
|
||||
async_task.disable_intermediate_results)
|
||||
|
||||
print(f'[Enhance] {dino_detection_count} boxes detected')
|
||||
print(f'[Enhance] {sam_detection_count} segments detected in boxes')
|
||||
print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask')
|
||||
|
||||
if enhance_mask_model == 'sam' and (
|
||||
dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0):
|
||||
print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping')
|
||||
continue
|
||||
|
||||
goals_enhance = ['inpaint']
|
||||
|
||||
try:
|
||||
current_progress, img = process_enhance(
|
||||
all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path,
|
||||
current_progress, current_task_id, denoising_strength,
|
||||
enhance_inpaint_disable_initial_latent, enhance_inpaint_engine,
|
||||
enhance_inpaint_respective_field, enhance_inpaint_strength, enhance_negative_prompt,
|
||||
enhance_prompt, final_scheduler_name, goals_enhance, height, img, mask, preparation_steps,
|
||||
enhance_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width)
|
||||
|
||||
except ldm_patched.modules.model_management.InterruptProcessingException:
|
||||
if async_task.last_stop == 'skip':
|
||||
print('User skipped')
|
||||
async_task.last_stop = False
|
||||
continue
|
||||
else:
|
||||
print('User stopped')
|
||||
break
|
||||
finally:
|
||||
done_steps_inpainting += enhance_steps
|
||||
|
||||
enhancement_task_time = time.perf_counter() - enhancement_task_start_time
|
||||
print(f'Enhancement time: {enhancement_task_time:.2f} seconds')
|
||||
|
||||
enhancement_image_time = time.perf_counter() - enhancement_image_start_time
|
||||
print(f'Enhancement image time: {enhancement_image_time:.2f} seconds')
|
||||
|
||||
stop_processing(async_task, processing_start_time)
|
||||
return
|
||||
|
|
|
|||
9
webui.py
9
webui.py
|
|
@ -325,6 +325,11 @@ with shared.gradio_root:
|
|||
desc_input_image.upload(trigger_show_image_properties, inputs=desc_input_image,
|
||||
outputs=desc_image_size, show_progress=False, queue=False)
|
||||
|
||||
with gr.TabItem(label='Enhance') as enhance_tab:
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
enhance_input_image = grh.Image(label='Image to enhance', source='upload', type='numpy')
|
||||
|
||||
with gr.TabItem(label='Metadata') as metadata_tab:
|
||||
with gr.Column():
|
||||
metadata_input_image = grh.Image(label='For images created by Fooocus', source='upload', type='filepath')
|
||||
|
|
@ -488,6 +493,7 @@ with shared.gradio_root:
|
|||
inpaint_tab.select(lambda: 'inpaint', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
|
||||
ip_tab.select(lambda: 'ip', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
|
||||
desc_tab.select(lambda: 'desc', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
|
||||
enhance_tab.select(lambda: 'enhance', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
|
||||
metadata_tab.select(lambda: 'metadata', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
|
||||
|
||||
enhance_checkbox.change(lambda x: gr.update(visible=x), inputs=enhance_checkbox,
|
||||
|
|
@ -930,7 +936,8 @@ with shared.gradio_root:
|
|||
ctrls += [save_metadata_to_images, metadata_scheme]
|
||||
|
||||
ctrls += ip_ctrls
|
||||
ctrls += [debugging_dino, dino_erode_or_dilate, debugging_enhance_masks_checkbox, enhance_checkbox, enhance_uov_method]
|
||||
ctrls += [debugging_dino, dino_erode_or_dilate, debugging_enhance_masks_checkbox,
|
||||
enhance_input_image, enhance_checkbox, enhance_uov_method]
|
||||
ctrls += enhance_ctrls
|
||||
|
||||
def parse_meta(raw_prompt_txt, is_generating):
|
||||
|
|
|
|||
Loading…
Reference in New Issue