Fooocus GitHub Bot Commit

This commit is generated by a GitHub bot of Fooocus
This commit is contained in:
lllyasviel 2023-10-22 04:04:57 -07:00
parent cb950bd247
commit 3acf1d6494
3 changed files with 49 additions and 17 deletions

View File

@ -416,7 +416,7 @@ class T2IAdapter(ControlBase):
if control_prev is not None:
return control_prev
else:
return {}
return None
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:

View File

@ -95,9 +95,19 @@ def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
scale = (q.shape[-1] // heads) ** -0.5
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
@ -119,16 +129,24 @@ def attention_basic(q, k, v, heads, mask=None):
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
def attention_sub_quad(query, key, value, heads, mask=None):
scale = (query.shape[-1] // heads) ** -0.5
query = query.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
key_t = key.transpose(1,2).unflatten(1, (heads, -1)).flatten(end_dim=1)
del key
value = value.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
b, _, dim_head = query.shape
dim_head //= heads
scale = dim_head ** -0.5
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
dtype = query.dtype
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
@ -137,7 +155,7 @@ def attention_sub_quad(query, key, value, heads, mask=None):
else:
bytes_per_token = torch.finfo(query.dtype).bits//8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key_t.shape
_, _, k_tokens = key.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
@ -171,7 +189,7 @@ def attention_sub_quad(query, key, value, heads, mask=None):
hidden_states = efficient_dot_product_attention(
query,
key_t,
key,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
@ -186,9 +204,19 @@ def attention_sub_quad(query, key, value, heads, mask=None):
return hidden_states
def attention_split(q, k, v, heads, mask=None):
scale = (q.shape[-1] // heads) ** -0.5
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
@ -248,9 +276,13 @@ def attention_split(q, k, v, heads, mask=None):
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return r2
r1 = (
r1.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return r1
def attention_xformers(q, k, v, heads, mask=None):
b, _, dim_head = q.shape

View File

@ -1 +1 @@
version = '2.1.724'
version = '2.1.725'