Update Backend

Update Backend
This commit is contained in:
lllyasviel 2023-10-25 08:07:41 -07:00
parent bb965067e0
commit 38e70cebcc
11 changed files with 288 additions and 252 deletions

View File

@ -0,0 +1,64 @@
import enum
import torch
import math
import fcbh.utils
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
return abs(a*b) // math.gcd(a, b)
class CONDRegular:
def __init__(self, cond):
self.cond = cond
def _copy_with(self, cond):
return self.__class__(cond)
def process_cond(self, batch_size, device, **kwargs):
return self._copy_with(fcbh.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
def can_concat(self, other):
if self.cond.shape != other.cond.shape:
return False
return True
def concat(self, others):
conds = [self.cond]
for x in others:
conds.append(x.cond)
return torch.cat(conds)
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
return self._copy_with(fcbh.utils.repeat_to_batch_size(data, batch_size).to(device))
class CONDCrossAttn(CONDRegular):
def can_concat(self, other):
s1 = self.cond.shape
s2 = other.cond.shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
return False
mult_min = lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
return True
def concat(self, others):
conds = [self.cond]
crossattn_max_len = self.cond.shape[1]
for x in others:
c = x.cond
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
conds.append(c)
out = []
for c in conds:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
out.append(c)
return torch.cat(out)

View File

@ -156,7 +156,7 @@ class ControlNet(ControlBase):
context = cond['c_crossattn']
y = cond.get('c_adm', None)
y = cond.get('y', None)
if y is not None:
y = y.to(self.control_model.dtype)
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)

View File

@ -4,6 +4,7 @@ from fcbh.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmen
from fcbh.ldm.modules.diffusionmodules.util import make_beta_schedule
from fcbh.ldm.modules.diffusionmodules.openaimodel import Timestep
import fcbh.model_management
import fcbh.conds
import numpy as np
from enum import Enum
from . import utils
@ -49,7 +50,7 @@ class BaseModel(torch.nn.Module):
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
if c_concat is not None:
xc = torch.cat([x] + [c_concat], dim=1)
else:
@ -59,9 +60,10 @@ class BaseModel(torch.nn.Module):
xc = xc.to(dtype)
t = t.to(dtype)
context = context.to(dtype)
if c_adm is not None:
c_adm = c_adm.to(dtype)
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options).float()
extra_conds = {}
for o in kwargs:
extra_conds[o] = kwargs[o].to(dtype)
return self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
def get_dtype(self):
return self.diffusion_model.dtype
@ -72,7 +74,8 @@ class BaseModel(torch.nn.Module):
def encode_adm(self, **kwargs):
return None
def cond_concat(self, **kwargs):
def extra_conds(self, **kwargs):
out = {}
if self.inpaint_model:
concat_keys = ("mask", "masked_image")
cond_concat = []
@ -101,8 +104,12 @@ class BaseModel(torch.nn.Module):
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
return cond_concat
return None
data = torch.cat(cond_concat, dim=1)
out['c_concat'] = fcbh.conds.CONDNoiseShape(data)
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = fcbh.conds.CONDRegular(adm)
return out
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}

View File

@ -1,6 +1,7 @@
import torch
import fcbh.model_management
import fcbh.samplers
import fcbh.conds
import fcbh.utils
import math
import numpy as np
@ -33,22 +34,24 @@ def prepare_mask(noise_mask, shape, device):
noise_mask = noise_mask.to(device)
return noise_mask
def broadcast_cond(cond, batch, device):
"""broadcasts conditioning to the batch size"""
copy = []
for p in cond:
t = fcbh.utils.repeat_to_batch_size(p[0], batch)
t = t.to(device)
copy += [[t] + p[1:]]
return copy
def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c[1]:
models += [c[1][model_type]]
if model_type in c:
models += [c[model_type]]
return models
def convert_cond(cond):
out = []
for c in cond:
temp = c[1].copy()
model_conds = temp.get("model_conds", {})
if c[0] is not None:
model_conds["c_crossattn"] = fcbh.conds.CONDCrossAttn(c[0])
temp["model_conds"] = model_conds
out.append(temp)
return out
def get_additional_models(positive, negative, dtype):
"""loads additional models in positive and negative conditioning"""
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
@ -72,6 +75,8 @@ def cleanup_additional_models(models):
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
device = model.load_device
positive = convert_cond(positive)
negative = convert_cond(negative)
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise_shape, device)
@ -81,9 +86,7 @@ def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
fcbh.model_management.load_models_gpu([model] + models, fcbh.model_management.batch_area_memory(noise_shape[0] * noise_shape[2] * noise_shape[3]) + inference_memory)
real_model = model.model
positive_copy = broadcast_cond(positive, noise_shape[0], device)
negative_copy = broadcast_cond(negative, noise_shape[0], device)
return real_model, positive_copy, negative_copy, noise_mask, models
return real_model, positive, negative, noise_mask, models
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):

View File

@ -2,47 +2,44 @@ from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
from .extra_samplers import uni_pc
import torch
import enum
from fcbh import model_management
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
import math
from fcbh import model_base
import fcbh.utils
import fcbh.conds
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
return abs(a*b) // math.gcd(a, b)
#The main sampling function shared by all the samplers
#Returns predicted noise
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
def get_area_and_mult(cond, x_in, timestep_in):
def get_area_and_mult(conds, x_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
if 'timestep_start' in cond[1]:
timestep_start = cond[1]['timestep_start']
if 'timestep_start' in conds:
timestep_start = conds['timestep_start']
if timestep_in[0] > timestep_start:
return None
if 'timestep_end' in cond[1]:
timestep_end = cond[1]['timestep_end']
if 'timestep_end' in conds:
timestep_end = conds['timestep_end']
if timestep_in[0] < timestep_end:
return None
if 'area' in cond[1]:
area = cond[1]['area']
if 'strength' in cond[1]:
strength = cond[1]['strength']
adm_cond = None
if 'adm_encoded' in cond[1]:
adm_cond = cond[1]['adm_encoded']
if 'area' in conds:
area = conds['area']
if 'strength' in conds:
strength = conds['strength']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
if 'mask' in cond[1]:
if 'mask' in conds:
# Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process
mask_strength = 1.0
if "mask_strength" in cond[1]:
mask_strength = cond[1]["mask_strength"]
mask = cond[1]['mask']
if "mask_strength" in conds:
mask_strength = conds["mask_strength"]
mask = conds['mask']
assert(mask.shape[1] == x_in.shape[2])
assert(mask.shape[2] == x_in.shape[3])
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
@ -51,7 +48,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, mod
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in cond[1]:
if 'mask' not in conds:
rr = 8
if area[2] != 0:
for t in range(rr):
@ -67,27 +64,17 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, mod
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
conditionning = {}
conditionning['c_crossattn'] = cond[0]
if 'concat' in cond[1]:
cond_concat_in = cond[1]['concat']
if cond_concat_in is not None and len(cond_concat_in) > 0:
cropped = []
for x in cond_concat_in:
cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
cropped.append(cr)
conditionning['c_concat'] = torch.cat(cropped, dim=1)
if adm_cond is not None:
conditionning['c_adm'] = adm_cond
model_conds = conds["model_conds"]
for c in model_conds:
conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
control = None
if 'control' in cond[1]:
control = cond[1]['control']
if 'control' in conds:
control = conds['control']
patches = None
if 'gligen' in cond[1]:
gligen = cond[1]['gligen']
if 'gligen' in conds:
gligen = conds['gligen']
patches = {}
gligen_type = gligen[0]
gligen_model = gligen[1]
@ -105,22 +92,8 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, mod
return True
if c1.keys() != c2.keys():
return False
if 'c_crossattn' in c1:
s1 = c1['c_crossattn'].shape
s2 = c2['c_crossattn'].shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
return False
mult_min = lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
if 'c_concat' in c1:
if c1['c_concat'].shape != c2['c_concat'].shape:
return False
if 'c_adm' in c1:
if c1['c_adm'].shape != c2['c_adm'].shape:
for k in c1:
if not c1[k].can_concat(c2[k]):
return False
return True
@ -149,31 +122,19 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, mod
c_concat = []
c_adm = []
crossattn_max_len = 0
for x in c_list:
if 'c_crossattn' in x:
c = x['c_crossattn']
if crossattn_max_len == 0:
crossattn_max_len = c.shape[1]
else:
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
c_crossattn.append(c)
if 'c_concat' in x:
c_concat.append(x['c_concat'])
if 'c_adm' in x:
c_adm.append(x['c_adm'])
out = {}
c_crossattn_out = []
for c in c_crossattn:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
c_crossattn_out.append(c)
if len(c_crossattn_out) > 0:
out['c_crossattn'] = torch.cat(c_crossattn_out)
if len(c_concat) > 0:
out['c_concat'] = torch.cat(c_concat)
if len(c_adm) > 0:
out['c_adm'] = torch.cat(c_adm)
temp = {}
for x in c_list:
for k in x:
cur = temp.get(k, [])
cur.append(x[k])
temp[k] = cur
out = {}
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
return out
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, model_options):
@ -389,19 +350,19 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
for i in range(len(conditions)):
c = conditions[i]
if 'area' in c[1]:
area = c[1]['area']
if 'area' in c:
area = c['area']
if area[0] == "percentage":
modified = c[1].copy()
modified = c.copy()
area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
modified['area'] = area
c = [c[0], modified]
c = modified
conditions[i] = c
if 'mask' in c[1]:
mask = c[1]['mask']
if 'mask' in c:
mask = c['mask']
mask = mask.to(device=device)
modified = c[1].copy()
modified = c.copy()
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
if mask.shape[1] != h or mask.shape[2] != w:
@ -422,37 +383,39 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
modified['area'] = area
modified['mask'] = mask
conditions[i] = [c[0], modified]
conditions[i] = modified
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
if 'area' not in c:
return
c_area = c[1]['area']
c_area = c['area']
smallest = None
for x in conds:
if 'area' in x[1]:
a = x[1]['area']
if 'area' in x:
a = x['area']
if c_area[2] >= a[2] and c_area[3] >= a[3]:
if a[0] + a[2] >= c_area[0] + c_area[2]:
if a[1] + a[3] >= c_area[1] + c_area[3]:
if smallest is None:
smallest = x
elif 'area' not in smallest[1]:
elif 'area' not in smallest:
smallest = x
else:
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
smallest = x
else:
if smallest is None:
smallest = x
if smallest is None:
return
if 'area' in smallest[1]:
if smallest[1]['area'] == c_area:
if 'area' in smallest:
if smallest['area'] == c_area:
return
n = c[1].copy()
conds += [[smallest[0], n]]
out = c.copy()
out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
conds += [out]
def calculate_start_end_timesteps(model, conds):
for t in range(len(conds)):
@ -460,18 +423,18 @@ def calculate_start_end_timesteps(model, conds):
timestep_start = None
timestep_end = None
if 'start_percent' in x[1]:
timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
if 'end_percent' in x[1]:
timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))
if 'start_percent' in x:
timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x['start_percent'] * 999.0)))
if 'end_percent' in x:
timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x['end_percent'] * 999.0)))
if (timestep_start is not None) or (timestep_end is not None):
n = x[1].copy()
n = x.copy()
if (timestep_start is not None):
n['timestep_start'] = timestep_start
if (timestep_end is not None):
n['timestep_end'] = timestep_end
conds[t] = [x[0], n]
conds[t] = n
def pre_run_control(model, conds):
for t in range(len(conds)):
@ -480,8 +443,8 @@ def pre_run_control(model, conds):
timestep_start = None
timestep_end = None
percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
if 'control' in x[1]:
x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
if 'control' in x:
x['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []
@ -490,16 +453,16 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
uncond_other = []
for t in range(len(conds)):
x = conds[t]
if 'area' not in x[1]:
if name in x[1] and x[1][name] is not None:
cond_cnets.append(x[1][name])
if 'area' not in x:
if name in x and x[name] is not None:
cond_cnets.append(x[name])
else:
cond_other.append((x, t))
for t in range(len(uncond)):
x = uncond[t]
if 'area' not in x[1]:
if name in x[1] and x[1][name] is not None:
uncond_cnets.append(x[1][name])
if 'area' not in x:
if name in x and x[name] is not None:
uncond_cnets.append(x[name])
else:
uncond_other.append((x, t))
@ -509,47 +472,35 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
for x in range(len(cond_cnets)):
temp = uncond_other[x % len(uncond_other)]
o = temp[0]
if name in o[1] and o[1][name] is not None:
n = o[1].copy()
if name in o and o[name] is not None:
n = o.copy()
n[name] = uncond_fill_func(cond_cnets, x)
uncond += [[o[0], n]]
uncond += [n]
else:
n = o[1].copy()
n = o.copy()
n[name] = uncond_fill_func(cond_cnets, x)
uncond[temp[1]] = [o[0], n]
uncond[temp[1]] = n
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
for t in range(len(conds)):
x = conds[t]
adm_out = None
if 'adm' in x[1]:
adm_out = x[1]["adm"]
else:
params = x[1].copy()
params["width"] = params.get("width", width * 8)
params["height"] = params.get("height", height * 8)
params["prompt_type"] = params.get("prompt_type", prompt_type)
adm_out = model.encode_adm(device=device, **params)
if adm_out is not None:
x[1] = x[1].copy()
x[1]["adm_encoded"] = fcbh.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
return conds
def encode_cond(model_function, key, conds, device, **kwargs):
for t in range(len(conds)):
x = conds[t]
params = x[1].copy()
params = x.copy()
params["device"] = device
params["noise"] = noise
params["width"] = params.get("width", noise.shape[3] * 8)
params["height"] = params.get("height", noise.shape[2] * 8)
params["prompt_type"] = params.get("prompt_type", prompt_type)
for k in kwargs:
if k not in params:
params[k] = kwargs[k]
out = model_function(**params)
if out is not None:
x[1] = x[1].copy()
x[1][key] = out
x = x.copy()
model_conds = x['model_conds'].copy()
for k in out:
model_conds[k] = out[k]
x['model_conds'] = model_conds
conds[t] = x
return conds
class Sampler:
@ -667,19 +618,15 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
pre_run_control(model_wrap, negative + positive)
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if latent_image is not None:
latent_image = model.process_latent_in(latent_image)
if model.is_adm():
positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
if hasattr(model, 'cond_concat'):
positive = encode_cond(model.cond_concat, "concat", positive, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
negative = encode_cond(model.cond_concat, "concat", negative, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
if hasattr(model, 'extra_conds'):
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

View File

@ -1 +1 @@
version = '2.1.739'
version = '2.1.740'

View File

@ -174,7 +174,6 @@ def worker():
loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
goals.append('inpaint')
sampler_name = 'dpmpp_2m_sde_gpu' # only support the patched dpmpp_2m_sde_gpu
if current_tab == 'ip' or \
advanced_parameters.mixing_image_prompt_and_inpaint or \
advanced_parameters.mixing_image_prompt_and_vary_upscale:

View File

@ -342,7 +342,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
sigma_max = float(sigma_max.cpu().numpy())
print(f'[Sampler] sigma_min = {sigma_min}, sigma_max = {sigma_max}')
modules.patch.globalBrownianTreeNoiseSampler = BrownianTreeNoiseSampler(
modules.patch.BrownianTreeNoiseSamplerPatched.global_init(
empty_latent['samples'].to(fcbh.model_management.get_torch_device()),
sigma_min, sigma_max, seed=image_seed, cpu=False)

View File

@ -23,9 +23,10 @@ import args_manager
import modules.advanced_parameters as advanced_parameters
import warnings
import safetensors.torch
import modules.constants as constants
from fcbh.k_diffusion import utils
from fcbh.k_diffusion.sampling import trange
from fcbh.k_diffusion.sampling import BatchedBrownianTree
from fcbh.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed
@ -280,68 +281,58 @@ def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs):
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
globalBrownianTreeNoiseSampler = None
@torch.no_grad()
def sample_dpmpp_fooocus_2m_sde_inpaint_seamless(model, x, sigmas, extra_args=None, callback=None,
disable=None, eta=1., s_noise=1., **kwargs):
print('[Sampler] Fooocus sampler is activated.')
seed = extra_args.get("seed", None)
assert isinstance(seed, int)
energy_generator = torch.Generator(device='cpu')
energy_generator.manual_seed(seed + 1) # avoid bad results by using different seeds.
def get_energy():
return torch.randn(x.size(), dtype=x.dtype, generator=energy_generator, device="cpu").to(x)
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised, h_last, h = None, None, None
latent_processor = model.inner_model.inner_model.inner_model.process_latent_in
inpaint_latent = None
inpaint_mask = None
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
if inpaint_worker.current_task is not None:
if getattr(self, 'energy_generator', None) is None:
# avoid bad results by using different seeds.
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED)
latent_processor = self.inner_model.inner_model.inner_model.process_latent_in
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1))
current_energy = torch.randn(x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask)
def blend_latent(a, b, w):
return a * w + b * (1 - w)
out = self.inner_model(x, sigma,
cond=cond,
uncond=uncond,
cond_scale=cond_scale,
model_options=model_options,
seed=seed)
for i in trange(len(sigmas) - 1, disable=disable):
if inpaint_latent is None:
denoised = model(x, sigmas[i] * s_in, **extra_args)
else:
energy = get_energy() * sigmas[i] + inpaint_latent
x_prime = blend_latent(x, energy, inpaint_mask)
denoised = model(x_prime, sigmas[i] * s_in, **extra_args)
denoised = blend_latent(denoised, inpaint_latent, inpaint_mask)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask)
else:
out = self.inner_model(x, sigma,
cond=cond,
uncond=uncond,
cond_scale=cond_scale,
model_options=model_options,
seed=seed)
return out
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
x = x + globalBrownianTreeNoiseSampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (
-2 * eta_h).expm1().neg().sqrt() * s_noise
class BrownianTreeNoiseSamplerPatched:
transform = None
tree = None
old_denoised = denoised
h_last = h
@staticmethod
def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max))
return x
BrownianTreeNoiseSamplerPatched.transform = transform
BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __init__(self, *args, **kwargs):
pass
@staticmethod
def __call__(sigma, sigma_next):
transform = BrownianTreeNoiseSamplerPatched.transform
tree = BrownianTreeNoiseSamplerPatched.tree
t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next))
return tree(t0, t1) / (t1 - t0).abs().sqrt()
def timed_adm(y, timesteps):
@ -523,10 +514,11 @@ def patch_all():
fcbh.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched
fcbh.cldm.cldm.ControlNet.forward = patched_cldm_forward
fcbh.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward
fcbh.k_diffusion.sampling.sample_dpmpp_2m_sde_gpu = sample_dpmpp_fooocus_2m_sde_inpaint_seamless
fcbh.k_diffusion.external.DiscreteEpsDDPMDenoiser.forward = patched_discrete_eps_ddpm_denoiser_forward
fcbh.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
fcbh.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method
fcbh.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward
fcbh.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched
warnings.filterwarnings(action='ignore', module='torchsde')

View File

@ -3,10 +3,10 @@ import fcbh.samplers
import fcbh.model_management
from fcbh.model_base import SDXLRefiner, SDXL
from fcbh.conds import CONDRegular
from fcbh.sample import get_additional_models, get_models_from_cond, cleanup_additional_models
from fcbh.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \
create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_adm, \
encode_cond
create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_model_conds
current_refiner = None
@ -15,15 +15,13 @@ refiner_switch_step = -1
@torch.no_grad()
@torch.inference_mode()
def clip_separate(cond, target_model=None, target_clip=None):
c, p = cond[0]
def clip_separate_inner(c, p, target_model=None, target_clip=None):
if target_model is None or isinstance(target_model, SDXLRefiner):
c = c[..., -1280:].clone()
p = {"pooled_output": p["pooled_output"].clone()}
elif isinstance(target_model, SDXL):
c = c.clone()
p = {"pooled_output": p["pooled_output"].clone()}
else:
p = None
c = c[..., :768].clone()
final_layer_norm = target_clip.cond_stage_model.clip_l.transformer.text_model.final_layer_norm
@ -43,9 +41,42 @@ def clip_separate(cond, target_model=None, target_clip=None):
final_layer_norm.to(device=final_layer_norm_origin_device, dtype=final_layer_norm_origin_dtype)
c = c.to(device=c_origin_device, dtype=c_origin_dtype)
return c, p
p = {}
return [[c, p]]
@torch.no_grad()
@torch.inference_mode()
def clip_separate(cond, target_model=None, target_clip=None):
results = []
for c, px in cond:
p = px.get('pooled_output', None)
c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip)
p = {} if p is None else {'pooled_output': p.clone()}
results.append([c, p])
return results
@torch.no_grad()
@torch.inference_mode()
def clip_separate_after_preparation(cond, target_model=None, target_clip=None):
results = []
for x in cond:
p = x.get('pooled_output', None)
c = x['model_conds']['c_crossattn'].cond
c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip)
result = {'model_conds': {'c_crossattn': CONDRegular(c)}}
if p is not None:
result['pooled_output'] = p.clone()
results.append(result)
return results
@torch.no_grad()
@ -73,31 +104,24 @@ def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas
# pre_run_control(model_wrap, negative + positive)
pre_run_control(model_wrap, positive) # negative is not necessary in Fooocus, 0.5s faster.
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if latent_image is not None:
latent_image = model.process_latent_in(latent_image)
if model.is_adm():
positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
if hasattr(model, 'cond_concat'):
positive = encode_cond(model.cond_concat, "concat", positive, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
negative = encode_cond(model.cond_concat, "concat", negative, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
if hasattr(model, 'extra_conds'):
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
if current_refiner is not None and current_refiner.model.is_adm():
positive_refiner = clip_separate(positive, target_model=current_refiner.model)
negative_refiner = clip_separate(negative, target_model=current_refiner.model)
if current_refiner is not None and hasattr(current_refiner.model, 'extra_conds'):
positive_refiner = clip_separate_after_preparation(positive, target_model=current_refiner.model)
negative_refiner = clip_separate_after_preparation(negative, target_model=current_refiner.model)
positive_refiner = encode_adm(current_refiner.model, positive_refiner, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
negative_refiner = encode_adm(current_refiner.model, negative_refiner, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")
positive_refiner[0][1]['adm_encoded'].to(positive[0][1]['adm_encoded'])
negative_refiner[0][1]['adm_encoded'].to(negative[0][1]['adm_encoded'])
positive_refiner = encode_model_conds(current_refiner.model.extra_conds, positive_refiner, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
negative_refiner = encode_model_conds(current_refiner.model.extra_conds, negative_refiner, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
def refiner_switch():
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))

View File

@ -148,9 +148,9 @@ with shared.gradio_root:
with gr.TabItem(label='Inpaint or Outpaint (beta)') as inpaint_tab:
inpaint_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas')
gr.HTML('Outpaint Expansion (<a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>):')
gr.HTML('Outpaint Expansion Direction:')
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint', show_label=False, container=False)
gr.HTML('* \"Inpaint or Outpaint\" is powered by the sampler \"DPMPP Fooocus Seamless 2M SDE Karras Inpaint Sampler\" (beta)')
gr.HTML('* Powered by Fooocus Inpaint Engine (beta) <a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>')
switch_js = "(x) => {if(x){setTimeout(() => window.scrollTo({ top: 850, behavior: 'smooth' }), 50);}else{setTimeout(() => window.scrollTo({ top: 0, behavior: 'smooth' }), 50);} return x}"
down_js = "() => {setTimeout(() => window.scrollTo({ top: 850, behavior: 'smooth' }), 50);}"