feat: add restart sampler (#3219)
This commit is contained in:
parent
9178aa8ebb
commit
34f67c01a8
|
|
@ -835,4 +835,74 @@ def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, n
|
||||||
else:
|
else:
|
||||||
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2)
|
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_restart(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
|
||||||
|
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
|
||||||
|
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
|
||||||
|
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
|
||||||
|
"""
|
||||||
|
extra_args = {} if extra_args is None else extra_args
|
||||||
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
step_id = 0
|
||||||
|
|
||||||
|
def heun_step(x, old_sigma, new_sigma, second_order=True):
|
||||||
|
nonlocal step_id
|
||||||
|
denoised = model(x, old_sigma * s_in, **extra_args)
|
||||||
|
d = to_d(x, old_sigma, denoised)
|
||||||
|
if callback is not None:
|
||||||
|
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
|
||||||
|
dt = new_sigma - old_sigma
|
||||||
|
if new_sigma == 0 or not second_order:
|
||||||
|
# Euler method
|
||||||
|
x = x + d * dt
|
||||||
|
else:
|
||||||
|
# Heun's method
|
||||||
|
x_2 = x + d * dt
|
||||||
|
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
|
||||||
|
d_2 = to_d(x_2, new_sigma, denoised_2)
|
||||||
|
d_prime = (d + d_2) / 2
|
||||||
|
x = x + d_prime * dt
|
||||||
|
step_id += 1
|
||||||
|
return x
|
||||||
|
|
||||||
|
steps = sigmas.shape[0] - 1
|
||||||
|
if restart_list is None:
|
||||||
|
if steps >= 20:
|
||||||
|
restart_steps = 9
|
||||||
|
restart_times = 1
|
||||||
|
if steps >= 36:
|
||||||
|
restart_steps = steps // 4
|
||||||
|
restart_times = 2
|
||||||
|
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
||||||
|
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
||||||
|
else:
|
||||||
|
restart_list = {}
|
||||||
|
|
||||||
|
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
|
||||||
|
|
||||||
|
step_list = []
|
||||||
|
for i in range(len(sigmas) - 1):
|
||||||
|
step_list.append((sigmas[i], sigmas[i + 1]))
|
||||||
|
if i + 1 in restart_list:
|
||||||
|
restart_steps, restart_times, restart_max = restart_list[i + 1]
|
||||||
|
min_idx = i + 1
|
||||||
|
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
||||||
|
if max_idx < min_idx:
|
||||||
|
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
|
||||||
|
while restart_times > 0:
|
||||||
|
restart_times -= 1
|
||||||
|
step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:]))
|
||||||
|
|
||||||
|
last_sigma = None
|
||||||
|
for old_sigma, new_sigma in tqdm(step_list, disable=disable):
|
||||||
|
if last_sigma is None:
|
||||||
|
last_sigma = old_sigma
|
||||||
|
elif last_sigma < old_sigma:
|
||||||
|
x = x + torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
|
||||||
|
x = heun_step(x, old_sigma, new_sigma)
|
||||||
|
last_sigma = new_sigma
|
||||||
|
|
||||||
return x
|
return x
|
||||||
|
|
@ -523,7 +523,7 @@ class UNIPCBH2(Sampler):
|
||||||
|
|
||||||
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd", "edm_playground_v2.5"]
|
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd", "edm_playground_v2.5", "restart"]
|
||||||
|
|
||||||
class KSAMPLER(Sampler):
|
class KSAMPLER(Sampler):
|
||||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||||
|
|
|
||||||
|
|
@ -35,7 +35,8 @@ KSAMPLER = {
|
||||||
"dpmpp_3m_sde_gpu": "",
|
"dpmpp_3m_sde_gpu": "",
|
||||||
"ddpm": "",
|
"ddpm": "",
|
||||||
"lcm": "LCM",
|
"lcm": "LCM",
|
||||||
"tcd": "TCD"
|
"tcd": "TCD",
|
||||||
|
"restart": "Restart"
|
||||||
}
|
}
|
||||||
|
|
||||||
SAMPLER_EXTRA = {
|
SAMPLER_EXTRA = {
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue