This commit is contained in:
lvmin 2023-08-10 10:07:29 -07:00
parent 3b2d07e9f5
commit 34b1e3a3c5
1 changed files with 59 additions and 38 deletions

View File

@ -23,8 +23,8 @@ class KSamplerAdvanced:
sampler = self.SAMPLERS[0]
self.scheduler = scheduler
self.sampler = sampler
self.sigma_min=float(self.model_wrap.sigma_min)
self.sigma_max=float(self.model_wrap.sigma_max)
self.sigma_min = float(self.model_wrap.sigma_min)
self.sigma_max = float(self.model_wrap.sigma_max)
self.set_steps(steps, denoise)
self.denoise = denoise
self.model_options = model_options
@ -40,7 +40,8 @@ class KSamplerAdvanced:
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
elif self.scheduler == "exponential":
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min,
sigma_max=self.sigma_max)
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps)
elif self.scheduler == "simple":
@ -59,11 +60,12 @@ class KSamplerAdvanced:
if denoise is None or denoise > 0.9999:
self.sigmas = self.calculate_sigmas(steps).to(self.device)
else:
new_steps = int(steps/denoise)
new_steps = int(steps / denoise)
sigmas = self.calculate_sigmas(new_steps).to(self.device)
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None,
force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
if sigmas is None:
sigmas = self.sigmas
sigma_min = self.sigma_min
@ -92,7 +94,7 @@ class KSamplerAdvanced:
calculate_start_end_timesteps(self.model_wrap, negative)
calculate_start_end_timesteps(self.model_wrap, positive)
#make sure each cond area has an opposite one with the same area
# make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
@ -100,30 +102,36 @@ class KSamplerAdvanced:
pre_run_control(self.model_wrap, negative + positive)
apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(
list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control',
lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if self.model.is_adm():
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device,
"positive")
negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device,
"negative")
if latent_image is not None:
latent_image = self.model.process_latent_in(latent_image)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
extra_args = {"cond": positive, "uncond": negative, "cond_scale": cfg, "model_options": self.model_options,
"seed": seed}
cond_concat = None
if hasattr(self.model, 'concat_keys'): #inpaint
if hasattr(self.model, 'concat_keys'): # inpaint
cond_concat = []
for ck in self.model.concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask[:,:1])
cond_concat.append(denoise_mask[:, :1])
elif ck == "masked_image":
cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
cond_concat.append(
latent_image) # NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
cond_concat.append(torch.ones_like(noise)[:, :1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
extra_args["cond_concat"] = cond_concat
@ -133,11 +141,16 @@ class KSamplerAdvanced:
else:
max_denoise = True
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas,
sampling_function=sampling_function, max_denoise=max_denoise,
extra_args=extra_args, noise_mask=denoise_mask, callback=callback,
disable=disable_pbar)
elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas,
sampling_function=sampling_function, max_denoise=max_denoise,
extra_args=extra_args, noise_mask=denoise_mask, callback=callback,
variant='bh2', disable=disable_pbar)
elif self.sampler == "ddim":
timesteps = []
for s in range(sigmas.shape[0]):
@ -153,24 +166,26 @@ class KSamplerAdvanced:
sampler = DDIMSampler(self.model, device=self.device)
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
z_enc = sampler.stochastic_encode(latent_image,
torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device),
noise=noise, max_denoise=max_denoise)
samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
conditioning=positive,
batch_size=noise.shape[0],
shape=noise.shape[1:],
verbose=False,
unconditional_guidance_scale=cfg,
unconditional_conditioning=negative,
eta=0.0,
x_T=z_enc,
x0=latent_image,
img_callback=ddim_callback,
denoise_function=self.model_wrap.predict_eps_discrete_timestep,
extra_args=extra_args,
mask=noise_mask,
to_zero=sigmas[-1]==0,
end_step=sigmas.shape[0] - 1,
disable_pbar=disable_pbar)
conditioning=positive,
batch_size=noise.shape[0],
shape=noise.shape[1:],
verbose=False,
unconditional_guidance_scale=cfg,
unconditional_conditioning=negative,
eta=0.0,
x_T=z_enc,
x0=latent_image,
img_callback=ddim_callback,
denoise_function=self.model_wrap.predict_eps_discrete_timestep,
extra_args=extra_args,
mask=noise_mask,
to_zero=sigmas[-1] == 0,
end_step=sigmas.shape[0] - 1,
disable_pbar=disable_pbar)
else:
extra_args["denoise_mask"] = denoise_mask
@ -190,11 +205,17 @@ class KSamplerAdvanced:
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps,
extra_args=extra_args, callback=k_callback,
disable=disable_pbar)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0],
extra_args=extra_args, callback=k_callback,
disable=disable_pbar)
else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas,
extra_args=extra_args,
callback=k_callback,
disable=disable_pbar)
return self.model.process_latent_out(samples.to(torch.float32))