feat: add support for playground v2.5 (#3073)
* feat: add support for playground v2.5 * feat: add preset for playground v2.5 * feat: change URL to mashb1t * feat: optimize playground v2.5 preset
This commit is contained in:
parent
cb24c686b0
commit
2d55a5f257
|
|
@ -1,7 +1,4 @@
|
|||
import ldm_patched.modules.args_parser as args_parser
|
||||
import os
|
||||
|
||||
from tempfile import gettempdir
|
||||
|
||||
args_parser.parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
|
||||
|
||||
|
|
|
|||
|
|
@ -108,7 +108,7 @@ class ModelSamplingContinuousEDM:
|
|||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"sampling": (["v_prediction", "eps"],),
|
||||
"sampling": (["v_prediction", "edm_playground_v2.5", "eps"],),
|
||||
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
||||
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
||||
}}
|
||||
|
|
@ -121,17 +121,25 @@ class ModelSamplingContinuousEDM:
|
|||
def patch(self, model, sampling, sigma_max, sigma_min):
|
||||
m = model.clone()
|
||||
|
||||
latent_format = None
|
||||
sigma_data = 1.0
|
||||
if sampling == "eps":
|
||||
sampling_type = ldm_patched.modules.model_sampling.EPS
|
||||
elif sampling == "v_prediction":
|
||||
sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
|
||||
elif sampling == "edm_playground_v2.5":
|
||||
sampling_type = ldm_patched.modules.model_sampling.EDM
|
||||
sigma_data = 0.5
|
||||
latent_format = ldm_patched.modules.latent_formats.SDXL_Playground_2_5()
|
||||
|
||||
class ModelSamplingAdvanced(ldm_patched.modules.model_sampling.ModelSamplingContinuousEDM, sampling_type):
|
||||
pass
|
||||
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
model_sampling.set_sigma_range(sigma_min, sigma_max)
|
||||
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
|
||||
m.add_object_patch("model_sampling", model_sampling)
|
||||
if latent_format is not None:
|
||||
m.add_object_patch("latent_format", latent_format)
|
||||
return (m, )
|
||||
|
||||
class RescaleCFG:
|
||||
|
|
|
|||
|
|
@ -1,3 +1,4 @@
|
|||
import torch
|
||||
|
||||
class LatentFormat:
|
||||
scale_factor = 1.0
|
||||
|
|
@ -34,6 +35,70 @@ class SDXL(LatentFormat):
|
|||
]
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
class SDXL_Playground_2_5(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.5
|
||||
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
|
||||
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
|
||||
|
||||
self.latent_rgb_factors = [
|
||||
# R G B
|
||||
[ 0.3920, 0.4054, 0.4549],
|
||||
[-0.2634, -0.0196, 0.0653],
|
||||
[ 0.0568, 0.1687, -0.0755],
|
||||
[-0.3112, -0.2359, -0.2076]
|
||||
]
|
||||
self.taesd_decoder_name = "taesdxl_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return (latent - latents_mean) * self.scale_factor / latents_std
|
||||
|
||||
def process_out(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
||||
|
||||
class SD_X4(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 0.08333
|
||||
self.latent_rgb_factors = [
|
||||
[-0.2340, -0.3863, -0.3257],
|
||||
[ 0.0994, 0.0885, -0.0908],
|
||||
[-0.2833, -0.2349, -0.3741],
|
||||
[ 0.2523, -0.0055, -0.1651]
|
||||
]
|
||||
|
||||
class SC_Prior(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latent_rgb_factors = [
|
||||
[-0.0326, -0.0204, -0.0127],
|
||||
[-0.1592, -0.0427, 0.0216],
|
||||
[ 0.0873, 0.0638, -0.0020],
|
||||
[-0.0602, 0.0442, 0.1304],
|
||||
[ 0.0800, -0.0313, -0.1796],
|
||||
[-0.0810, -0.0638, -0.1581],
|
||||
[ 0.1791, 0.1180, 0.0967],
|
||||
[ 0.0740, 0.1416, 0.0432],
|
||||
[-0.1745, -0.1888, -0.1373],
|
||||
[ 0.2412, 0.1577, 0.0928],
|
||||
[ 0.1908, 0.0998, 0.0682],
|
||||
[ 0.0209, 0.0365, -0.0092],
|
||||
[ 0.0448, -0.0650, -0.1728],
|
||||
[-0.1658, -0.1045, -0.1308],
|
||||
[ 0.0542, 0.1545, 0.1325],
|
||||
[-0.0352, -0.1672, -0.2541]
|
||||
]
|
||||
|
||||
class SC_B(LatentFormat):
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0 / 0.43
|
||||
self.latent_rgb_factors = [
|
||||
[ 0.1121, 0.2006, 0.1023],
|
||||
[-0.2093, -0.0222, -0.0195],
|
||||
[-0.3087, -0.1535, 0.0366],
|
||||
[ 0.0290, -0.1574, -0.4078]
|
||||
]
|
||||
|
|
@ -1,5 +1,4 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
from ldm_patched.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
import math
|
||||
|
||||
|
|
@ -12,12 +11,28 @@ class EPS:
|
|||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
if max_denoise:
|
||||
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
|
||||
else:
|
||||
noise = noise * sigma
|
||||
|
||||
noise += latent_image
|
||||
return noise
|
||||
|
||||
def inverse_noise_scaling(self, sigma, latent):
|
||||
return latent
|
||||
|
||||
class V_PREDICTION(EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
class EDM(V_PREDICTION):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||
|
||||
|
||||
class ModelSamplingDiscrete(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
|
|
@ -42,24 +57,23 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
|||
else:
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
||||
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
|
||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||
self.set_sigmas(sigmas)
|
||||
self.set_alphas_cumprod(alphas_cumprod.float())
|
||||
|
||||
def set_sigmas(self, sigmas):
|
||||
self.register_buffer('sigmas', sigmas)
|
||||
self.register_buffer('log_sigmas', sigmas.log())
|
||||
|
||||
def set_alphas_cumprod(self, alphas_cumprod):
|
||||
self.register_buffer("alphas_cumprod", alphas_cumprod.float())
|
||||
self.register_buffer('sigmas', sigmas.float())
|
||||
self.register_buffer('log_sigmas', sigmas.log().float())
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
|
|
@ -94,8 +108,6 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
|||
class ModelSamplingContinuousEDM(torch.nn.Module):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
self.sigma_data = 1.0
|
||||
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
|
|
@ -103,9 +115,11 @@ class ModelSamplingContinuousEDM(torch.nn.Module):
|
|||
|
||||
sigma_min = sampling_settings.get("sigma_min", 0.002)
|
||||
sigma_max = sampling_settings.get("sigma_max", 120.0)
|
||||
self.set_sigma_range(sigma_min, sigma_max)
|
||||
sigma_data = sampling_settings.get("sigma_data", 1.0)
|
||||
self.set_parameters(sigma_min, sigma_max, sigma_data)
|
||||
|
||||
def set_sigma_range(self, sigma_min, sigma_max):
|
||||
def set_parameters(self, sigma_min, sigma_max, sigma_data):
|
||||
self.sigma_data = sigma_data
|
||||
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
|
||||
|
||||
self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
|
||||
|
|
@ -134,3 +148,56 @@ class ModelSamplingContinuousEDM(torch.nn.Module):
|
|||
|
||||
log_sigma_min = math.log(self.sigma_min)
|
||||
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
|
||||
|
||||
class StableCascadeSampling(ModelSamplingDiscrete):
|
||||
def __init__(self, model_config=None):
|
||||
super().__init__()
|
||||
|
||||
if model_config is not None:
|
||||
sampling_settings = model_config.sampling_settings
|
||||
else:
|
||||
sampling_settings = {}
|
||||
|
||||
self.set_parameters(sampling_settings.get("shift", 1.0))
|
||||
|
||||
def set_parameters(self, shift=1.0, cosine_s=8e-3):
|
||||
self.shift = shift
|
||||
self.cosine_s = torch.tensor(cosine_s)
|
||||
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
|
||||
|
||||
#This part is just for compatibility with some schedulers in the codebase
|
||||
self.num_timesteps = 10000
|
||||
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
|
||||
for x in range(self.num_timesteps):
|
||||
t = (x + 1) / self.num_timesteps
|
||||
sigmas[x] = self.sigma(t)
|
||||
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
def sigma(self, timestep):
|
||||
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)
|
||||
|
||||
if self.shift != 1.0:
|
||||
var = alpha_cumprod
|
||||
logSNR = (var/(1-var)).log()
|
||||
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
|
||||
alpha_cumprod = logSNR.sigmoid()
|
||||
|
||||
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
|
||||
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5
|
||||
|
||||
def timestep(self, sigma):
|
||||
var = 1 / ((sigma * sigma) + 1)
|
||||
var = var.clamp(0, 1.0)
|
||||
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
|
||||
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
|
||||
return t
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
return 999999999.9
|
||||
if percent >= 1.0:
|
||||
return 0.0
|
||||
|
||||
percent = 1.0 - percent
|
||||
return self.sigma(torch.tensor(percent))
|
||||
|
|
@ -523,7 +523,7 @@ class UNIPCBH2(Sampler):
|
|||
|
||||
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd"]
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd", "edm_playground_v2.5"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
|
|
|||
|
|
@ -828,16 +828,33 @@ def worker():
|
|||
|
||||
if scheduler_name in ['lcm', 'tcd']:
|
||||
final_scheduler_name = 'sgm_uniform'
|
||||
if pipeline.final_unet is not None:
|
||||
pipeline.final_unet = core.opModelSamplingDiscrete.patch(
|
||||
|
||||
def patch_discrete(unet):
|
||||
return core.opModelSamplingDiscrete.patch(
|
||||
pipeline.final_unet,
|
||||
sampling=scheduler_name,
|
||||
zsnr=False)[0]
|
||||
|
||||
if pipeline.final_unet is not None:
|
||||
pipeline.final_unet = patch_discrete(pipeline.final_unet)
|
||||
if pipeline.final_refiner_unet is not None:
|
||||
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
|
||||
pipeline.final_refiner_unet,
|
||||
pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet)
|
||||
print(f'Using {scheduler_name} scheduler.')
|
||||
elif scheduler_name == 'edm_playground_v2.5':
|
||||
final_scheduler_name = 'karras'
|
||||
|
||||
def patch_edm(unet):
|
||||
return core.opModelSamplingContinuousEDM.patch(
|
||||
unet,
|
||||
sampling=scheduler_name,
|
||||
zsnr=False)[0]
|
||||
sigma_max=120.0,
|
||||
sigma_min=0.002)[0]
|
||||
|
||||
if pipeline.final_unet is not None:
|
||||
pipeline.final_unet = patch_edm(pipeline.final_unet)
|
||||
if pipeline.final_refiner_unet is not None:
|
||||
pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet)
|
||||
|
||||
print(f'Using {scheduler_name} scheduler.')
|
||||
|
||||
async_task.yields.append(['preview', (flags.preparation_step_count, 'Moving model to GPU ...', None)])
|
||||
|
|
|
|||
|
|
@ -21,8 +21,7 @@ from modules.lora import match_lora
|
|||
from modules.util import get_file_from_folder_list
|
||||
from ldm_patched.modules.lora import model_lora_keys_unet, model_lora_keys_clip
|
||||
from modules.config import path_embeddings
|
||||
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete
|
||||
|
||||
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete, ModelSamplingContinuousEDM
|
||||
|
||||
opEmptyLatentImage = EmptyLatentImage()
|
||||
opVAEDecode = VAEDecode()
|
||||
|
|
@ -32,6 +31,7 @@ opVAEEncodeTiled = VAEEncodeTiled()
|
|||
opControlNetApplyAdvanced = ControlNetApplyAdvanced()
|
||||
opFreeU = FreeU_V2()
|
||||
opModelSamplingDiscrete = ModelSamplingDiscrete()
|
||||
opModelSamplingContinuousEDM = ModelSamplingContinuousEDM()
|
||||
|
||||
|
||||
class StableDiffusionModel:
|
||||
|
|
|
|||
|
|
@ -48,8 +48,7 @@ SAMPLERS = KSAMPLER | SAMPLER_EXTRA
|
|||
|
||||
KSAMPLER_NAMES = list(KSAMPLER.keys())
|
||||
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo",
|
||||
"align_your_steps", "tcd"]
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo", "align_your_steps", "tcd", "edm_playground_v2.5"]
|
||||
SAMPLER_NAMES = KSAMPLER_NAMES + list(SAMPLER_EXTRA.keys())
|
||||
|
||||
sampler_list = SAMPLER_NAMES
|
||||
|
|
|
|||
|
|
@ -51,8 +51,6 @@ def patched_register_schedule(self, given_betas=None, beta_schedule="linear", ti
|
|||
self.linear_end = linear_end
|
||||
sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32)
|
||||
self.set_sigmas(sigmas)
|
||||
alphas_cumprod = torch.tensor(alphas_cumprod, dtype=torch.float32)
|
||||
self.set_alphas_cumprod(alphas_cumprod)
|
||||
return
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -2,5 +2,6 @@
|
|||
!anime.json
|
||||
!default.json
|
||||
!lcm.json
|
||||
!playground_v2.5.json
|
||||
!realistic.json
|
||||
!sai.json
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
{
|
||||
"default_model": "playground-v2.5-1024px-aesthetic.fp16.safetensors",
|
||||
"default_refiner": "None",
|
||||
"default_refiner_switch": 0.5,
|
||||
"default_loras": [
|
||||
[
|
||||
true,
|
||||
"None",
|
||||
1.0
|
||||
],
|
||||
[
|
||||
true,
|
||||
"None",
|
||||
1.0
|
||||
],
|
||||
[
|
||||
true,
|
||||
"None",
|
||||
1.0
|
||||
],
|
||||
[
|
||||
true,
|
||||
"None",
|
||||
1.0
|
||||
],
|
||||
[
|
||||
true,
|
||||
"None",
|
||||
1.0
|
||||
]
|
||||
],
|
||||
"default_cfg_scale": 3,
|
||||
"default_sample_sharpness": 2.0,
|
||||
"default_sampler": "dpmpp_2m",
|
||||
"default_scheduler": "edm_playground_v2.5",
|
||||
"default_performance": "Speed",
|
||||
"default_prompt": "",
|
||||
"default_prompt_negative": "",
|
||||
"default_styles": [
|
||||
"Fooocus V2",
|
||||
"Fooocus Enhance",
|
||||
"Fooocus Sharp"
|
||||
],
|
||||
"default_aspect_ratio": "1024*1024",
|
||||
"checkpoint_downloads": {
|
||||
"playground-v2.5-1024px-aesthetic.fp16.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/playground-v2.5-1024px-aesthetic.fp16.safetensors"
|
||||
},
|
||||
"embeddings_downloads": {},
|
||||
"lora_downloads": {},
|
||||
"previous_default_models": []
|
||||
}
|
||||
Loading…
Reference in New Issue