feat: extract remaining attributes, do not use globals in patch
This commit is contained in:
parent
f3222b0f27
commit
177075ff7b
|
|
@ -1,5 +1,6 @@
|
|||
import threading
|
||||
|
||||
import os
|
||||
from modules.patch import PatchSettings, patch_settings
|
||||
|
||||
class AsyncTask:
|
||||
def __init__(self, args):
|
||||
|
|
@ -42,6 +43,9 @@ def worker():
|
|||
get_image_shape_ceil, set_image_shape_ceil, get_shape_ceil, resample_image, erode_or_dilate
|
||||
from modules.upscaler import perform_upscale
|
||||
|
||||
pid = os.getpid()
|
||||
print(f'Started worker with PID {pid}')
|
||||
|
||||
try:
|
||||
async_gradio_app = shared.gradio_root
|
||||
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
|
||||
|
|
@ -227,22 +231,22 @@ def worker():
|
|||
adm_scaler_end = 0.0
|
||||
steps = 8
|
||||
|
||||
modules.patch.adaptive_cfg = adaptive_cfg
|
||||
print(f'[Parameters] Adaptive CFG = {modules.patch.adaptive_cfg}')
|
||||
|
||||
modules.patch.sharpness = sharpness
|
||||
print(f'[Parameters] Sharpness = {modules.patch.sharpness}')
|
||||
|
||||
modules.patch.controlnet_softness = controlnet_softness
|
||||
print(f'[Parameters] ControlNet Softness = {modules.patch.controlnet_softness}')
|
||||
|
||||
modules.patch.positive_adm_scale = adm_scaler_positive
|
||||
modules.patch.negative_adm_scale = adm_scaler_negative
|
||||
modules.patch.adm_scaler_end = adm_scaler_end
|
||||
print(f'[Parameters] Adaptive CFG = {adaptive_cfg}')
|
||||
print(f'[Parameters] Sharpness = {sharpness}')
|
||||
print(f'[Parameters] ControlNet Softness = {controlnet_softness}')
|
||||
print(f'[Parameters] ADM Scale = '
|
||||
f'{modules.patch.positive_adm_scale} : '
|
||||
f'{modules.patch.negative_adm_scale} : '
|
||||
f'{modules.patch.adm_scaler_end}')
|
||||
f'{adm_scaler_positive} : '
|
||||
f'{adm_scaler_negative} : '
|
||||
f'{adm_scaler_end}')
|
||||
|
||||
patch_settings[pid] = PatchSettings(
|
||||
sharpness,
|
||||
adm_scaler_end,
|
||||
adm_scaler_positive,
|
||||
adm_scaler_negative,
|
||||
controlnet_softness,
|
||||
adaptive_cfg
|
||||
)
|
||||
|
||||
cfg_scale = float(guidance_scale)
|
||||
print(f'[Parameters] CFG = {cfg_scale}')
|
||||
|
|
@ -815,9 +819,9 @@ def worker():
|
|||
('Sharpness', sharpness),
|
||||
('Guidance Scale', guidance_scale),
|
||||
('ADM Guidance', str((
|
||||
modules.patch.positive_adm_scale,
|
||||
modules.patch.negative_adm_scale,
|
||||
modules.patch.adm_scaler_end))),
|
||||
modules.patch.patch_settings[pid].positive_adm_scale,
|
||||
modules.patch.patch_settings[pid].negative_adm_scale,
|
||||
modules.patch.patch_settings[pid].adm_scaler_end))),
|
||||
('Base Model', base_model_name),
|
||||
('Refiner Model', refiner_model_name),
|
||||
('Refiner Switch', refiner_switch),
|
||||
|
|
@ -860,6 +864,9 @@ def worker():
|
|||
except:
|
||||
traceback.print_exc()
|
||||
task.yields.append(['finish', task.results])
|
||||
finally:
|
||||
if pid in modules.patch.patch_settings:
|
||||
del modules.patch.patch_settings[os.getpid()]
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -425,7 +425,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
|||
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
|
||||
|
||||
if refiner_swap_method == 'vae':
|
||||
modules.patch.eps_record = 'vae'
|
||||
modules.patch.patch_settings[os.getpid()].eps_record = 'vae'
|
||||
|
||||
if modules.inpaint_worker.current_task is not None:
|
||||
modules.inpaint_worker.current_task.unswap()
|
||||
|
|
@ -463,7 +463,7 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
|||
denoise=denoise)[switch:] * k_sigmas
|
||||
len_sigmas = len(sigmas) - 1
|
||||
|
||||
noise_mean = torch.mean(modules.patch.eps_record, dim=1, keepdim=True)
|
||||
noise_mean = torch.mean(modules.patch.patch_settings[os.getpid()].eps_record, dim=1, keepdim=True)
|
||||
|
||||
if modules.inpaint_worker.current_task is not None:
|
||||
modules.inpaint_worker.current_task.swap()
|
||||
|
|
@ -493,5 +493,5 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
|||
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
|
||||
|
||||
images = core.pytorch_to_numpy(decoded_latent)
|
||||
modules.patch.eps_record = None
|
||||
modules.patch.patch_settings[os.getpid()].eps_record = None
|
||||
return images
|
||||
|
|
|
|||
|
|
@ -27,20 +27,27 @@ from ldm_patched.ldm.modules.diffusionmodules.openaimodel import forward_timeste
|
|||
from modules.patch_precision import patch_all_precision
|
||||
from modules.patch_clip import patch_all_clip
|
||||
|
||||
# TODO make these parameters dynamic:
|
||||
# TODO sharpness, adm_scaler_end, positive_adm_scale, negative_adm_scale, adaptive_cfg + controlnet_softness
|
||||
|
||||
sharpness = 2.0
|
||||
class PatchSettings:
|
||||
def __init__(self,
|
||||
sharpness=2.0,
|
||||
adm_scaler_end=0.3,
|
||||
positive_adm_scale=1.5,
|
||||
negative_adm_scale=0.8,
|
||||
controlnet_softness=0.25,
|
||||
adaptive_cfg=7.0):
|
||||
self.sharpness = sharpness
|
||||
self.adm_scaler_end = adm_scaler_end
|
||||
self.positive_adm_scale = positive_adm_scale
|
||||
self.negative_adm_scale = negative_adm_scale
|
||||
self.controlnet_softness = controlnet_softness
|
||||
self.adaptive_cfg = adaptive_cfg
|
||||
self.global_diffusion_progress = 0
|
||||
self.eps_record = None
|
||||
|
||||
adm_scaler_end = 0.3
|
||||
positive_adm_scale = 1.5
|
||||
negative_adm_scale = 0.8
|
||||
|
||||
controlnet_softness = 0.25
|
||||
patch_settings = {}
|
||||
|
||||
adaptive_cfg = 7.0
|
||||
global_diffusion_progress = 0
|
||||
eps_record = None
|
||||
|
||||
def calculate_weight_patched(self, patches, weight, key):
|
||||
for p in patches:
|
||||
|
|
@ -203,14 +210,12 @@ class BrownianTreeNoiseSamplerPatched:
|
|||
|
||||
|
||||
def compute_cfg(uncond, cond, cfg_scale, t):
|
||||
global adaptive_cfg
|
||||
|
||||
mimic_cfg = float(adaptive_cfg)
|
||||
mimic_cfg = float(patch_settings[os.getpid()].adaptive_cfg)
|
||||
real_cfg = float(cfg_scale)
|
||||
|
||||
real_eps = uncond + real_cfg * (cond - uncond)
|
||||
|
||||
if cfg_scale > adaptive_cfg:
|
||||
if cfg_scale > patch_settings[os.getpid()].adaptive_cfg:
|
||||
mimicked_eps = uncond + mimic_cfg * (cond - uncond)
|
||||
return real_eps * t + mimicked_eps * (1 - t)
|
||||
else:
|
||||
|
|
@ -218,13 +223,11 @@ def compute_cfg(uncond, cond, cfg_scale, t):
|
|||
|
||||
|
||||
def patched_sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options=None, seed=None):
|
||||
global eps_record
|
||||
|
||||
if math.isclose(cond_scale, 1.0) and not model_options.get("disable_cfg1_optimization", False):
|
||||
final_x0 = calc_cond_uncond_batch(model, cond, None, x, timestep, model_options)[0]
|
||||
|
||||
if eps_record is not None:
|
||||
eps_record = ((x - final_x0) / timestep).cpu()
|
||||
if patch_settings[os.getpid()].eps_record is not None:
|
||||
patch_settings[os.getpid()].eps_record = ((x - final_x0) / timestep).cpu()
|
||||
|
||||
return final_x0
|
||||
|
||||
|
|
@ -233,16 +236,16 @@ def patched_sampling_function(model, x, timestep, uncond, cond, cond_scale, mode
|
|||
positive_eps = x - positive_x0
|
||||
negative_eps = x - negative_x0
|
||||
|
||||
alpha = 0.001 * sharpness * global_diffusion_progress
|
||||
alpha = 0.001 * patch_settings[os.getpid()].sharpness * patch_settings[os.getpid()].global_diffusion_progress
|
||||
|
||||
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
|
||||
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha)
|
||||
|
||||
final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted,
|
||||
cfg_scale=cond_scale, t=global_diffusion_progress)
|
||||
cfg_scale=cond_scale, t=patch_settings[os.getpid()].global_diffusion_progress)
|
||||
|
||||
if eps_record is not None:
|
||||
eps_record = (final_eps / timestep).cpu()
|
||||
if patch_settings[os.getpid()].eps_record is not None:
|
||||
patch_settings[os.getpid()].eps_record = (final_eps / timestep).cpu()
|
||||
|
||||
return x - final_eps
|
||||
|
||||
|
|
@ -257,8 +260,6 @@ def round_to_64(x):
|
|||
|
||||
|
||||
def sdxl_encode_adm_patched(self, **kwargs):
|
||||
global positive_adm_scale, negative_adm_scale
|
||||
|
||||
clip_pooled = ldm_patched.modules.model_base.sdxl_pooled(kwargs, self.noise_augmentor)
|
||||
width = kwargs.get("width", 1024)
|
||||
height = kwargs.get("height", 1024)
|
||||
|
|
@ -266,11 +267,11 @@ def sdxl_encode_adm_patched(self, **kwargs):
|
|||
target_height = height
|
||||
|
||||
if kwargs.get("prompt_type", "") == "negative":
|
||||
width = float(width) * negative_adm_scale
|
||||
height = float(height) * negative_adm_scale
|
||||
width = float(width) * patch_settings[os.getpid()].negative_adm_scale
|
||||
height = float(height) * patch_settings[os.getpid()].negative_adm_scale
|
||||
elif kwargs.get("prompt_type", "") == "positive":
|
||||
width = float(width) * positive_adm_scale
|
||||
height = float(height) * positive_adm_scale
|
||||
width = float(width) * patch_settings[os.getpid()].positive_adm_scale
|
||||
height = float(height) * patch_settings[os.getpid()].positive_adm_scale
|
||||
|
||||
def embedder(number_list):
|
||||
h = self.embedder(torch.tensor(number_list, dtype=torch.float32))
|
||||
|
|
@ -324,7 +325,7 @@ def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale,
|
|||
|
||||
def timed_adm(y, timesteps):
|
||||
if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632:
|
||||
y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None]
|
||||
y_mask = (timesteps > 999.0 * (1.0 - float(patch_settings[os.getpid()].adm_scaler_end))).to(y)[..., None]
|
||||
y_with_adm = y[..., :2816].clone()
|
||||
y_without_adm = y[..., 2816:].clone()
|
||||
return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask)
|
||||
|
|
@ -359,19 +360,17 @@ def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
|||
h = self.middle_block(h, emb, context)
|
||||
outs.append(self.middle_block_out(h, emb, context))
|
||||
|
||||
if controlnet_softness > 0:
|
||||
if patch_settings[os.getpid()].controlnet_softness > 0:
|
||||
for i in range(10):
|
||||
k = 1.0 - float(i) / 9.0
|
||||
outs[i] = outs[i] * (1.0 - controlnet_softness * k)
|
||||
outs[i] = outs[i] * (1.0 - patch_settings[os.getpid()].controlnet_softness * k)
|
||||
|
||||
return outs
|
||||
|
||||
|
||||
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
global global_diffusion_progress
|
||||
|
||||
self.current_step = 1.0 - timesteps.to(x) / 999.0
|
||||
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0])
|
||||
patch_settings[os.getpid()].global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0])
|
||||
|
||||
y = timed_adm(y, timesteps)
|
||||
|
||||
|
|
@ -485,7 +484,7 @@ def patch_all():
|
|||
if ldm_patched.modules.model_management.directml_enabled:
|
||||
ldm_patched.modules.model_management.lowvram_available = True
|
||||
ldm_patched.modules.model_management.OOM_EXCEPTION = Exception
|
||||
|
||||
|
||||
patch_all_precision()
|
||||
patch_all_clip()
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue